Two-Stage Data-Driven Contextual Robust Optimization: An End-to-End Learning Approach for Online Energy Applications

Traditional end-to-end contextual robust optimization models are trained for specific contextual data, requiring complete retraining whenever new contextual information arrives. This limitation hampers their use in online decision-making problems such as energy scheduling, where multiperiod optimization must be solved every few minutes. In this paper, we propose a novel Data-Driven Contextual Uncertainty Set, which gives … Read more

Decision-focused predictions via pessimistic bilevel optimization: complexity and algorithms

Dealing with uncertainty in optimization parameters is an important and longstanding challenge. Typically, uncertain parameters are predicted accurately, and then a deterministic optimization problem is solved. However, the decisions produced by this so-called predict-then-optimize procedure can be highly sensitive to uncertain parameters. In this work, we contribute to recent efforts in producing  decision-focused predictions, i.e., … Read more

Optimal Robust Policy for Feature-Based Newsvendor

We study policy optimization for the feature-based newsvendor, which seeks an end-to-end policy that renders an explicit mapping from features to ordering decisions. Unlike existing works that restrict the policies to some parametric class which may suffer from sub-optimality (such as affine class) or lack of interpretability (such as neural networks), we aim to optimize … Read more