Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We show that … Read more

Random Sampling and Machine Learning to Understand Good Decompositions

Motivated by its implications in the development of general purpose solvers for decomposable Mixed Integer Programs (MIP), we address a fundamental research question, that is to assess if good decomposition patterns can be consistently found by looking only at static properties of MIP input instances, or not. We adopt a data driven approach, devising a … Read more

A Stabilised Scenario Decomposition Algorithm Applied to Stochastic Unit Commitment Problems

In recent years the expansion of energy supplies from volatile renewable sources has triggered an increased interest in stochastic optimization models for hydro-thermal unit commitment. Several studies have modelled this as a two-stage or multi-stage stochastic mixed-integer optimization problem. Solving such problems directly is computationally intractable for large instances, and alternative approaches are required. In … Read more

An approximation scheme for a class of risk-averse stochastic equilibrium problems

We consider two models for stochastic equilibrium: one based on the variational equilibrium of a generalized Nash game, and the other on the mixed complementarity formulation. Each agent in the market solves a one-stage risk-averse optimization problem with both here-and-now (investment) variables and (production) wait-and-see variables. A shared constraint couples almost surely the wait-and-see decisions … Read more

Automatic Dantzig-Wolfe Reformulation of Mixed Integer Programs

Dantzig-Wolfe decomposition (or reformulation) is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs). However, the method is not implemented in any state-of-the-art MIP solver as it is considered to require structural problem knowledge and tailoring to this structure. We provide a computational proof-of-concept that the reformulation can be automated. That … Read more

Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs

We report on experiments with turning the branch-cut-and-price framework SCIP into a generic branch-cut-and-price solver. That is, given a mixed integer program (MIP), our code performs a Dantzig-Wolfe decomposition according to the user’s specification, and solves the resulting re-formulation via branch-and-price. We take care of the column generation subproblems which are solved as MIPs themselves, … Read more