Robust Optimization with Continuous Decision-Dependent Uncertainty with Applications in Demand Response Portfolio Management

We consider a robust optimization problem with continuous decision-dependent uncertainty (RO-CDDU), which has two new features: an uncertainty set linearly dependent on continuous decision variables and a convex piecewise-linear objective function. We prove that RO-CDDU is strongly NP-hard in general and reformulate it into an equivalent mixed-integer nonlinear program (MINLP) with a decomposable structure to … Read more

Robust Integration of Electric Vehicles Charging Load in Smart Grid’s Capacity Expansion Planning

Battery charging of electric vehicles (EVs) needs to be properly coordinated by electricity producers to maintain network reliability. In this paper, we propose a robust approach to model the interaction between a large fleet of EV users and utilities in a long-term generation expansion planning problem. In doing so, we employ a robust multi-period adjustable … Read more

Affine Decision Rule Approximation to Immunize against Demand Response Uncertainty in Smart Grids’ Capacity Planning

Generation expansion planning (GEP) is a classical problem that determines an optimal investment plan for existing and future electricity generation technologies. GEP is a computationally challenging problem, as it typically corresponds to a very large-scale problem that contains several sources of uncertainties. With the advent of demand response (DR) as a reserved capacity in modern … Read more

Adaptable Energy Management System for Smart Buildings

This paper presents a novel adaptable energy management system for smart buildings. In this framework we model the energy consumption of a living unit, and its energy exchange with the surroundings. We explicitly consider the impact of the outside environment and design features such as building orientation, automatic shading, and double facade. We formulate this … Read more

Optimal Residential Users Coordination Via Demand Response: An Exact Distributed Framework

This paper proposes a two-phase optimization framework for users that are involved in demand response programs. In a first phase, responsive users optimize their own household consumption, characterizing not only their appliances and equipment but also their comfort preferences. Subsequently, the aggregator exploits in a second phase this preliminary noncoordinated solution by implementing a coordination … Read more

Optimal Residential Users Coordination Via Demand Response: An Exact Distributed Framework

This paper proposes a two-phase optimization framework for users that are involved in demand response (DR) programs. In a first phase, responsive users optimize their own household consumption, characterizing not only their appliances and equipments but also their comfort preferences. Subsequently, the aggregator exploits in a second phase this preliminary non-coordinated solution by implementing a … Read more

Optimal Residential Coordination Via Demand Response: A Distributed Framework

This paper proposes an optimization framework for retailers that are involved in demand response (DR) programs. In a first phase responsive users optimize their own household consumption, characterizing not only their appliances and equipment but also their comfort preferences. Then, the retailer exploits in a second phase this preliminary non-coordinated solution to implement a strategy … Read more

Optimal time-and-level-of-use price setting for an energy retailer

This paper presents a novel price setting optimization problem for an energy retailer in the smart grid. In this framework the retailer buys energy from multiple generators via bilateral contracts, and sells it to a population of smart homes using Time-and-Level-of-Use prices (TLOU). TLOU is an energy price structure recently introduced in the literature, where … Read more

Optimal Aggregated Peak Shaving Via Residential Demand Response: A Framework for Retailers

This paper proposes an optimization framework for retailers that are involved in demand response (DR) programs. In a first phase responsive users optimize their own household consumption, characterizing not only their smart home components but also their comfort preferences. Then, the retailer exploits in a second phase this preliminary non-coordinated solution to implement a peak … Read more

Multi-stage Stochastic Programming for Demand Response Optimization

The increase in the energy consumption puts pressure on natural resources and environment and results in a rise in the price of energy. This motivates residents to schedule their energy consumption through demand response mechanism. We propose a multi-stage stochastic programming model to schedule different kinds of electrical appliances under uncertain weather conditions and availability … Read more