First-order methods for the impatient: support identification in finite time with convergent Frank-Wolfe variants

In this paper, we focus on the problem of minimizing a non-convex function over the unit simplex. We analyze two well-known and widely used variants of the Frank-Wolfe algorithm and first prove global convergence of the iterates to stationary points both when using exact and Armijo line search. Then we show that the algorithms identify … Read more

Solving Quadratic Programs to High Precision using Scaled Iterative Refinement

Quadratic optimization problems (QPs) are ubiquitous, and solution algorithms have matured to a reliable technology. However, the precision of solutions is usually limited due to the underlying floating-point operations. This may cause inconveniences when solutions are used for rigorous reasoning. We contribute on three levels to overcome this issue. First, we present a novel refinement … Read more

A Filter Active-Set Algorithm for Ball/Sphere Constrained Optimization Problem

In this paper, we propose a filter active-set algorithm for the minimization problem over a product of multiple ball/sphere constraints. By making effective use of the special structure of the ball/sphere constraints, a new limited memory BFGS (L-BFGS) scheme is presented. The new L-BFGS implementation takes advantage of the sparse structure of the Jacobian of … Read more

Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set … Read more

A Fast Active Set Block Coordinate Descent Algorithm for l1-regularized least squares

The problem of finding sparse solutions to underdetermined systems of linear equations arises in several real-world problems (e.g. signal and image processing, compressive sensing, statistical inference). A standard tool for dealing with sparse recovery is the l1-regularized least-squares approach that has been recently attracting the attention of many researchers. In this paper, we describe an … Read more

An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts

A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full matrices for all but the first problem … Read more

A variable fixing version of the two-block nonlinear constrained Gauss-Seidel algorithm for ℓ1-regularized least-squares

The problem of finding sparse solutions to underdetermined systems of linear equations is very common in many fields as e.g. in signal/image processing and statistics. A standard tool for dealing with sparse recovery is the ℓ1-regularized least-squares approach that has recently attracted the attention of many researchers. In this paper, we describe a new version … Read more

Optimality, identifiability, and sensitivity

Around a solution of an optimization problem, an “identifiable” subset of the feasible region is one containing all nearby solutions after small perturbations to the problem. A quest for only the most essential ingredients of sensitivity analysis leads us to consider identifiable sets that are “minimal”. This new notion lays a broad and intuitive variational-analytic … Read more

Reliable solution of convex quadratic programs with parametric active set methods

Parametric Active Set Methods (PASM) are a relatively new class of methods to solve convex Quadratic Programming (QP) problems. They are based on tracing the solution along a linear homotopy between a QP with known solution and the QP to be solved. We explicitly identify numerical challenges in PASM and develop strategies to meet these … Read more

A Fast Algorithm for Sparse Reconstruction based on Shrinkage, Subspace Optimization and Continuation

We propose a fast algorithm for solving the l1-regularized least squares problem for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a first-order iterative method called “shrinkage” yields an estimate of the subset of components … Read more