Local optima smoothing for global optimization

It is widely believed that in order to solve large scale global optimization problems an appropriate mixture of local approximation and global exploration is necessary. Local approximation, if first order information on the objective function is available, is efficiently performed by means of local optimization methods. Unfortunately, global exploration, in absence of some kind of … Read more

Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems

Sequences of generalized Lagrangian duals and their SOS (sums of squares of polynomials) relaxations for a POP (polynomial optimization problem) are introduced. Sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the … Read more

Sharpening the Karush-John optimality conditions

A refined version of the Karush-John first order optimality conditions is presented which reduces the number of constraints for which a constraint qualification is needed. This version is a generalization both of the Karush-John conditions and of the first order optimality conditions for concave constraints. ArticleDownload View PDF

On Semidefinite Programming Relaxations for the Satisfiability Problem

This paper is concerned with the analysis and comparison of semidefinite programming (SDP) relaxations for the satisfiability (SAT) problem. Our presentation is focussed on the special case of 3-SAT, but the ideas presented can in principle be extended to any instance of SAT specified by a set of boolean variables and a propositional formula in … Read more

Global optimization of rational functions: a semidefinite programming approach

We consider the problem of global minimization of rational functions on $\LR^n$ (unconstrained case), and on an open, connected, semi-algebraic subset of $\LR^n$, or the (partial) closure of such a set (constrained case). We show that in the univariate case ($n=1$), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced … Read more

New global optima for Morse clusters at $\rho=8$

We recently discovered 5 new putative globally optimum configurations for Morse clusters at $\rho=8$. This report contains some algorithmic details as well as the structures determined with our method. CitationTechnical Report DSI 3-2003, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Firenze, 2003.ArticleDownload View PDF

Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones clusters

A standard stochastic global optimization method is applied to the challenging problem of finding the minimum energy conformation of cluster of identical atoms interacting through the Lennard-Jones potential. The method proposed is based on the use of a two-phase local search procedure which is capable of significantly enlarge the basin of attraction of the global … Read more

A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones

The class of POPs (Polynomial Optimization Problems) over cones covers a wide range of optimization problems such as $0$-$1$ integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. This paper presents a new framework for convex relaxation of POPs over cones in terms of linear optimization problems over cones. It provides a … Read more

A New Mathematical-Programming Framework for Facility-Layout Design

We present a new framework for efficiently finding competitive solutions for the facility-layout problem. This framework is based on the combination of two new mathematical-programming models. The first model is a relaxation of the layout problem and is intended to find good starting points for the iterative algorithm used to solve the second model. The … Read more

Global Optimization: Software, Test Problems, and Applications

We provide a concise review of the most prominent global optimization (GO) strategies currently available. This is followed by a discussion of GO software, test problems and several important types of applications, with additional pointers. The exposition is concentrated around topics related to continuous GO, although in certain aspects it is also pertinent to analogous … Read more