Hybridizing VNS and path-relinking on a particle swarm framework to minimize total flowtime

This paper presents a new hybridization of VNS and path-relinking on a particle swarm framework for the permutational fowshop scheduling problem with total flowtime criterion. The operators of the proposed particle swarm are based on path-relinking and variable neighborhood search methods. The performance of the new approach was tested on the bechmark suit of Taillard, … Read more

A biased random-key genetic algorithm for a 2D and 3D bin packing problem

We present a novel multi-population biased random-key genetic algorithm (BRKGA) for the 2D and 3D bin packing problem. The approach uses a maximal-space representation to manage the free spaces in the bins. The proposed algorithm uses a decoder based on a novel placement procedure within a multi-population genetic algorithm based on random keys. The BRKGA … Read more

A Python/C library for bound-constrained global optimization with continuous GRASP

This paper describes libcgrpp, a GNU-style dynamic shared Python/C library of the continuous greedy randomized adaptive search procedure (C-GRASP) for bound constrained global optimization. C-GRASP is an extension of the GRASP metaheuristic (Feo and Resende, 1989). After a brief introduction to C-GRASP, we show how to download, install, configure, and use the library through an … Read more

New VNS heuristic for Total Flowtime Flowshop Scheduling Problem

This paper develops a new VNS approach to Permutational Flow shop Scheduling Problem with Total Flow time criterion. There are many hybrid approaches inthe problem’s literature, that make use of VNS internally, usually applying job insert neighbourhood followed by job interchange neighbourhood. In this study different ways to combine both neighbourhoods were examined. All tests … Read more

Biased random-key genetic algorithms with applications in telecommunications

This paper surveys several applications of biased random-key genetic algorithms (BRKGA) in optimization problems that arise in telecommunications. We first review the basic concepts of BRKGA. This is followed by a description of BRKGA-based heuristics for routing in IP networks, design of survivable IP networks, redundant server location for content distribution, regenerator location in optical … Read more

The Set Covering Problem Revisited: An Empirical Study of the Value of Dual Information

This paper investigates the role of dual information on the performances of heuristics designed for solving the set covering problem. After solving the linear programming relaxation of the problem, the dual information is used to obtain the two main approaches proposed here: (i) The size of the original problem is reduced and then the resulting … Read more

A biased random-key genetic algorithm for the Steiner triple covering problem

We present a biased random-key genetic algorithm (BRKGA) for finding small covers of computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems. Using a parallel implementation of the BRKGA, we compute improved covers for the two largest instances in a standard set of test problems used … Read more

A heuristic block coordinate descent approach for controlled tabular adjustment

One of the main concerns of national statistical agencies (NSAs) is to publish tabular data. NSAs have to guarantee that no private information from specific respondents can be disclosed from the released tables. The purpose of the statistical disclosure control field is to avoid such a leak of private information. Most protection techniques for tabular … Read more

Non-linear approximations for solving 3D-packing MIP models: a heuristic approach

This article extends a previous work focused on a mixed integer programming (MIP) based heuristic approach, aimed at solving non-standard three-dimensional problems with additional conditions. The paper that follows considers a mixed integer non-linear (MINLP) reformulation of the previous model, to improve the former heuristic, based on linear relaxation. The approach described herewith is addressed, … Read more

An Empirical Evaluation of Walk-and-Round Heuristics for Mixed-Integer Linear Programs

Geometric random walks have been proposed and analyzed for solving optimization problems. In this paper we report our computational experience with generating feasible integer solutions of mixed-integer linear programs using geometric random walks, and a random ray approach. A feasibility pump is used to heuristically round the generated points. Computational results on MIPLIB2003 and COR@L … Read more