What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO

Though empirical testing is broadly used to evaluate heuristics, there are shortcomings with how it is often applied in practice. In a systematic review of Max-Cut and Quadratic Unconstrained Binary Optimization (QUBO) heuristics papers, we found only 4% publish source code, only 14% compare heuristics with identical termination criteria, and most experiments are performed with … Read more

New symmetries in mixed-integer linear optimization

We present two novel applications of symmetries for mixed-integer linear programming. First we propose two variants of a new heuristic to improve the objective value of a feasible solution using symmetries. These heuristics can use either the actual permutations or the orbits of the variables to find better feasible solutions. Then we introduce a new … Read more

Approaches to a real-world train timetabling problem in a railway node

We consider the Train Timetabling Problem (TTP) in a railway node (i.e. a set of stations in an urban area interconnected by tracks), which calls for determining the best schedule for a given set of trains during a given time horizon, while satisfying several track operational constraints. In particular, we consider the context of a … Read more

Improved Bounds for the Traveling Umpire Problem: A Stronger Formulation and a Relax-and-Fix Heuristic

Given a double round-robin tournament, the traveling umpire problem (TUP) consists of determining which games will be handled by each one of several umpire crews during the tournament. The objective is to minimize the total distance traveled by the umpires, while respecting constraints that include visiting every team at home, and not seeing a team … Read more

Biased and unbiased random-key genetic algorithms: An experimental analysis

We study the runtime performance of three types of random-key genetic algorithms: the unbiased algorithm of Bean (1994); the biased algorithm of Gonçalves and Resende (2011); and a greedy version of Bean’s algorithm on 12 instances from four types of covering problems: general-cost set covering, Steiner triple covering, general-cost set K-covering, and unit-cost covering by … Read more

Superiorization: An optimization heuristic for medical physics

Purpose: To describe and mathematically validate the superiorization methodology, which is a recently-developed heuristic approach to optimization, and to discuss its applicability to medical physics problem formulations that specify the desired solution (of physically given or otherwise obtained constraints) by an optimization criterion. Methods: The superiorization methodology is presented as a heuristic solver for a … Read more

Algorithms for the Cross-dock Door Assignment Problem

In a cross-dock facility, goods are moved by forklift from incoming truck platforms (strip doors) to temporary holding areas and then to outgoing truck platforms (stack doors) or directly from strip doors to stack doors. Costs within the cross-dock may be minimized by appropriate assignment of strip doors to incoming trucks and stack doors to … Read more

Aircraft deconfliction with speed regulation: new models from mixed-integer optimization

Detecting and solving aircraft conflicts, which occur when aircraft sharing the same airspace are too close to each other according to their predicted trajectories, is a crucial problem in Air Traffic Management. We focus on mixed-integer optimization models based on speed regulation. We first solve the problem to global optimality by means of an exact … Read more

Hybridizing VNS and path-relinking on a particle swarm framework to minimize total flowtime

This paper presents a new hybridization of VNS and path-relinking on a particle swarm framework for the permutational fowshop scheduling problem with total flowtime criterion. The operators of the proposed particle swarm are based on path-relinking and variable neighborhood search methods. The performance of the new approach was tested on the bechmark suit of Taillard, … Read more

A biased random-key genetic algorithm for a 2D and 3D bin packing problem

We present a novel multi-population biased random-key genetic algorithm (BRKGA) for the 2D and 3D bin packing problem. The approach uses a maximal-space representation to manage the free spaces in the bins. The proposed algorithm uses a decoder based on a novel placement procedure within a multi-population genetic algorithm based on random keys. The BRKGA … Read more