Iterative weighted thresholding method for sparse solution of underdetermined linear equations

Recently, iterative reweighted methods have attracted much interest in compressed sensing, since they perform better than unweighted ones in most cases. Currently, weights are chosen heuristically in existing iterative reweighted methods, and nding an optimal weight is an open problem since we do not know the exact support set beforehand. In this paper, we present … Read more

Reliable solution of convex quadratic programs with parametric active set methods

Parametric Active Set Methods (PASM) are a relatively new class of methods to solve convex Quadratic Programming (QP) problems. They are based on tracing the solution along a linear homotopy between a QP with known solution and the QP to be solved. We explicitly identify numerical challenges in PASM and develop strategies to meet these … Read more

When LP is not a good idea – using structure in polyhedral optimization problems

It has been known for almost 50 years that the discrete l_1 approximation problem can be solved effectively by linear programming. However, improved algorithms involve a step which can be interpreted as a line search, and which is not part of the standard LP solution procedures. l_1 provides the simplest example of a class of … Read more

A stable homotopy approach to horizontal linear complementarity problems

We are interested in the solution of Horizontal Linear Complementarity Problems, HLCPs, that is complementarity problems with more variables than equations. Globally metrically regular HLCPs have nonempty solution sets that are stable with respect to “right-hand-side perturbations” of the data, hence are numerically attractive. The main purpose of the paper is to show how the … Read more