Stochastic Mixed-Integer Programming: A Survey

The goal of this survey is to provide a road-map for exploring the growing area of stochastic mixed-integer programming (SMIP) models and algorithms. We provide a comprehensive overview of existing decomposition algorithms for two-stage SMIPs, including Dantzig-Wolfe decomposition, dual decomposition, Lagrangian cuts, and decomposition approaches using parametric cutting planes and scaled cuts. Moreover, we explicitly … Read more

Political districting to maximize whole counties

We consider a fundamental question in political districting: How many counties can be kept whole (i.e., not split across multiple districts), while satisfying basic criteria like contiguity and population balance? To answer this question, we propose integer programming techniques based on combinatorial Benders decomposition. The main problem decides which counties to keep whole, and the … Read more

On vehicle routing problems with stochastic demands — Generic integer L-shaped formulations

We study a broad class of vehicle routing problems in which the cost of a route is allowed to be any nonnegative rational value computable in polynomial time in the input size. To address this class, we introduce a unifying framework that generalizes existing integer L-shaped (ILS) formulations developed for vehicle routing problems with stochastic … Read more

On Integer Programming for the Binarized Neural Network Verification Problem

Binarized neural networks (BNNs) are feedforward neural networks with binary weights and activation functions. In the context of using a BNN for classification, the verification problem seeks to determine whether a small perturbation of a given input can lead it to be misclassified by the BNN, and the robustness of the BNN can be measured … Read more

Approximating value functions via corner Benders’ cuts

We introduce a novel technique to generate Benders’ cuts from a conic relaxation (“corner”) derived from a basis of a higher-dimensional polyhedron that we aim to outer approximate in a lower-dimensional space. To generate facet-defining inequalities for the epigraph associated to this corner, we develop a computationally-efficient algorithm based on a compact reverse polar formulation … Read more

The 1-persistency of the clique relaxation of the stable set polytope: a focus on some forbidden structures

A polytope $P\subseteq [0,1]^n$ is said to have the \emph{persistency} property if for every vector $c\in \R^{n}$ and every $c$-optimal point $x\in P$, there exists a $c$-optimal integer point $y\in P\cap \{0,1\}^n$ such that $x_i = y_i$ for each $i \in \{1,\dots,n\}$ with $x_i \in \{0,1\}$. In this paper, we consider a relaxation of the … Read more

A Single-Level Reformulation of Binary Bilevel Programs using Decision Diagrams

Binary bilevel programs are notoriously difficult to solve due to the absence of strong and efficiently computable relaxations. In this work, we introduce a novel single-level reformulation of these programs by leveraging a network flow-based representation of the follower’s value function, utilizing decision diagrams and linear programming duality. This approach enables the development of scalable … Read more

An analytical lower bound for a class of minimizing quadratic integer optimization problems

Lower bounds on minimization problems are essential for convergence of both branching-based and iterative solution methods for optimization problems. They are also required for evaluating the quality of feasible solutions by providing conservative optimality gaps. We provide an analytical lower bound for a class of quadratic optimization problems with binary decision variables. In contrast to … Read more

Partitioning a graph into low-diameter clusters

This paper studies the problems of partitioning the vertices of a graph G = (V,E) into (or covering with) a minimum number of low-diameter clusters from the lenses of approximation algorithms and integer programming. Here, the low-diameter criterion is formalized by an s-club, which is a subset of vertices whose induced subgraph has diameter at … Read more

Column Elimination: An Iterative Approach to Solving Integer Programs

We present column elimination as a general framework for solving (large-scale) integer programming problems. In this framework, solutions are represented compactly as paths in a directed acyclic graph. Column elimination starts with a relaxed representation, that may contain infeasible paths, and solves a constrained network flow over the graph to find a solution. It then … Read more