A logarithmic barrier interior-point method based on majorant functions for second-order cone programming

We present a logarithmic barrier interior-point method for solving a second-order cone programming problem. Newton’s method is used to compute the descent direction, and majorant functions are used as an efficient alternative to line search methods to determine the displacement step along the direction. The efficiency of our method is shown by presenting numerical experiments. … Read more

A primal-dual interior-point method based on various selections of displacement step for second-order cone programming

In this paper, a primal-dual interior-point method equipped with various selections of the displacement step are derived for solving second-order cone programming problems. We first establish the existence and uniqueness of the optimal solution of the corresponding perturbed problem and then demonstrate its convergence to the optimal solution of the original problem. Next, we present … Read more

Sampling with respect to a class of measures arising in second-order cone optimization with rank constraints

We describe a classof measures on second-order cones as a push-forward of the Cartesian product of a probabilistic measure on positive semi-line corresponding to Gamma distribution and the uniform measure on the sphere Citation report, Department of Mathematics, University of Notre Dame, July, 2011 Article Download View Sampling with respect to a class of measures … Read more

Jordan-algebraic approach to convexity theorem for quadratic mappings

We describe a Jordan-algebraic version of results related to convexity of images of quadratic mappings as well as related results on exactness of symmetric relaxations of certain classes of nonconvex optimization problems. The exactness of relaxations is proved based on rank estimates. Our approach provides a unifying viewpoint on a large number of classical results … Read more

Jordan-algebraic aspects of nonconvex optimization over symmetric cones

We illustrate the usefulness of Jordan-algebraic technique for nonconvex optimization by considering a potential-reduction algorithm for a nonconvex quadratic function over the domain obtained as the intersection of a symmetric cone with an affine subspace Citation Preprint, September,2004 Article Download View Jordan-algebraic aspects of nonconvex optimization over symmetric cones

The Q Method for Symmetric Cone Programming

We extend the Q method to the symmetric cone programming. An infeasible interior point algorithm and a Newton-type algorithm are given. We give convergence results of the interior point algorithm and prove that the Newton-type algorithm is good for Citation AdvOl-Report#2004/18 McMaster University, Advanced Optimization Laboratory Hamilton, Ontario, Canada October 2004 Article Download View The … Read more

Implementation of Infinite Dimensional Interior Point Method for Solving Multi-criteria Linear-Quadratic Control Problem

We describe an implementation of an infinite-dimensional primal-dual algorithm based on the Nesterov-Todd direction. Several applications to both continuous and discrete-time multi-criteria linear-quadratic control problems and linear-quadratic control problem with quadratic constraints are described. Numerical results show a very fast convergence (typically, within 3-4 iterations) to optimal solutions Citation Preprint, May, 2004, University of Notre … Read more

Self-scaled barrier functions on symmetric cones and their classification

Self-scaled barrier functions on self-scaled cones were introduced through a set of axioms in 1994 by Y.E. Nesterov and M.J. Todd as a tool for the construction of long-step interior point algorithms. This paper provides firm foundation for these objects by exhibiting their symmetry properties, their intimate ties with the symmetry groups of their domains … Read more