Lipschitz minimization and the Goldstein modulus
Goldstein’s 1977 idealized iteration for minimizing a Lipschitz objective fixes a distance – the step size – and relies on a certain approximate subgradient. That “Goldstein subgradient” is the shortest convex combination of objective gradients at points within that distance of the current iterate. A recent implementable Goldstein-style algorithm allows a remarkable complexity analysis (Zhang … Read more