A user manual for cuHALLaR: A GPU accelerated low-rank semidefinite programming Solver

We present a Julia-based interface to the precompiled HALLaR and cuHALLaR binaries for large-scale semidefinite programs (SDPs). Both solvers are established as fast and numerically stable, and accept problem data in formats compatible with SDPA and a new enhanced data format taking advantage of Hybrid Sparse Low-Rank (HSLR) structure. The interface allows users to load … Read more

cuHALLaR: A GPU accelerated low-rank augmented Lagrangian method for large-scale semidefinite programming

This paper introduces cuHALLaR, a GPU-accelerated implementation of the HALLaR method proposed in Monteiro et al. 2024 for solving large-scale semidefinite programming (SDP) problems. We demonstrate how our Julia-based implementation efficiently uses GPU parallelism through optimization of simple, but key, operations, including linear maps, adjoints, and gradient evaluations. Extensive numerical experiments across three problem classes—maximum … Read more

Polynomial time guarantees for the Burer-Monteiro method

The Burer-Monteiro method is one of the most widely used techniques for solving large-scale semidefinite programs (SDP). The basic idea is to solve a nonconvex program in $Y$, where $Y$ is an $n \times p$ matrix such that $X = Y Y^T$. In this paper, we show that this method can solve SDPs in polynomial … Read more

Burer-Monteiro guarantees for general semidefinite programs

Consider a semidefinite program (SDP) involving an $n\times n$ positive semidefinite matrix $X$. The Burer-Monteiro method consists in solving a nonconvex program in $Y$, where $Y$ is an $n\times p$ matrix such that $X = Y Y^T$. Despite nonconvexity, Boumal et al. showed that the method provably solves generic equality-constrained SDP’s when $p > \sqrt{2m}$, … Read more

SpeeDP: A new algorithm to compute the SDP relaxations of Max-Cut for very large graphs

We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained {-1,1} quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function … Read more

A Nonlinear Programming Algorithm for Solving Semidefinite Programs via Low-rank Factorization

In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm’s distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factorization X = RR^T. The rank of the factorization, i.e., … Read more