New insights and algorithms for optimal diagonal preconditioning

Preconditioning (scaling) is essential in many areas of mathematics, and in particular in optimization. In this work, we study the problem of finding an optimal diagonal preconditioner. We focus on minimizing two different notions of condition number: the classical, worst-case type, \(\kappa\)-condition number, and the more averaging motivated \(\omega\)-condition number. We provide affine based pseudoconvex … Read more

A user manual for cuHALLaR: A GPU accelerated low-rank semidefinite programming Solver

We present a Julia-based interface to the precompiled HALLaR and cuHALLaR binaries for large-scale semidefinite programs (SDPs). Both solvers are established as fast and numerically stable, and accept problem data in formats compatible with SDPA and a new enhanced data format taking advantage of Hybrid Sparse Low-Rank (HSLR) structure. The interface allows users to load … Read more

Asymptotically Fair and Truthful Allocation of Public Goods

We study the fair and truthful allocation of m divisible public items among n agents, each with distinct preferences for the items. To aggregate agents’ preferences fairly, we focus on finding a core solution. For divisible items, a core solution always exists and can be calculated by maximizing the Nash welfare objective. However, such a … Read more

cuHALLaR: A GPU accelerated low-rank augmented Lagrangian method for large-scale semidefinite programming

This paper introduces cuHALLaR, a GPU-accelerated implementation of the HALLaR method proposed in Monteiro et al. 2024 for solving large-scale semidefinite programming (SDP) problems. We demonstrate how our Julia-based implementation efficiently uses GPU parallelism through optimization of simple, but key, operations, including linear maps, adjoints, and gradient evaluations. Extensive numerical experiments across three problem classes—maximum … Read more

Efficient parameter-free restarted accelerated gradient methods for convex and strongly convex optimization

This paper develops a new parameter-free restarted method, namely RPF-SFISTA, and a new parameter-free aggressive regularization method, namely A-REG, for solving strongly convex and convex composite optimization problems, respectively. RPF-SFISTA has the major advantage that it requires no knowledge of both the strong convexity parameter of the entire composite objective and the Lipschitz constant of … Read more

A low-rank augmented Lagrangian method for large-scale semidefinite programming based on a hybrid convex-nonconvex approach

This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL) method where the AL subproblems are solved by a novel hybrid low-rank (HLR) method. The recipe behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point method … Read more

An adaptive superfast inexact proximal augmented Lagrangian method for smooth nonconvex composite optimization problems

This work presents an adaptive superfast proximal augmented Lagrangian (AS-PAL) method for solving linearly-constrained smooth nonconvex composite optimization problems. Each iteration of AS-PAL inexactly solves a possibly nonconvex proximal augmented Lagrangian (AL) subproblem obtained by an aggressive/adaptive choice of prox stepsize with the aim of substantially improving its computational performance followed by a full Lagrangian … Read more