An Elementary Proof of the Near Optimality of LogSumExp Smoothing

We consider the design of smoothings of the (coordinate-wise) max function in $\mathbb{R}^d$ in the infinity norm. The LogSumExp function $f(x)=\ln(\sum^d_i\exp(x_i))$ provides a classical smoothing, differing from the max function in value by at most $\ln(d)$. We provide an elementary construction of a lower bound, establishing that every overestimating smoothing of the max function must … Read more

New Results on the Polyak Stepsize: Tight Convergence Analysis and Universal Function Classes

In this paper, we revisit a classical adaptive stepsize strategy for gradient descent: the Polyak stepsize (PolyakGD), originally proposed in Polyak (1969). We study the convergence behavior of PolyakGD from two perspectives: tight worst-case analysis and universality across function classes. As our first main result, we establish the tightness of the known convergence rates of … Read more

The Rectangular Spiral or the n_1 × n_2 × · · · × n_k Points Problem

A generalization of Ripà’s square spiral solution for the n × n × ··· × n Points Upper Bound Problem. Additionally, we provide a non-trivial lower bound for the k-dimensional n_1 × n_2 × ··· × n_k Points Problem. In this way, we can build a range in which, with certainty, all the best possible … Read more

Minimum-Link Covering Trails for any Hypercubic Lattice

In 1994, Kranakis et al. published a conjecture about the minimum link-length of every rectilinear covering path for the \(k\)-dimensional grid \(P(n,k) := \{0,1, \dots, n-1\} \times \{0,1, \dots, n-1\} \times \cdots \times \{0,1, \dots, n-1\}\). In this paper, we consider the general, NP-complete, Line-Cover problem, where the edges are not required to be axis-parallel, … Read more