Matheuristics for $\PsihBcLearning

Recently, the so-called $\psi$-learning approach, the Support Vector Machine (SVM) classifier obtained with the ramp loss, has attracted attention from the computational point of view. A Mixed Integer Nonlinear Programming (MINLP) formulation has been proposed for $\psi$-learning, but solving this MINLP formulation to optimality is only possible for datasets of small size. For datasets of … Read more

Aircraft deconfliction with speed regulation: new models from mixed-integer optimization

Detecting and solving aircraft conflicts, which occur when aircraft sharing the same airspace are too close to each other according to their predicted trajectories, is a crucial problem in Air Traffic Management. We focus on mixed-integer optimization models based on speed regulation. We first solve the problem to global optimality by means of an exact … Read more

Solving Mixed-Integer Nonlinear Programs by QP-Diving

We present a new tree-search algorithm for solving mixed-integer nonlinear programs (MINLPs). Rather than relying on computationally expensive nonlinear solves at every node of the branch-and-bound tree, our algorithm solves a quadratic approximation at every node. We show that the resulting algorithm retains global convergence properties for convex MINLPs, and we present numerical results on … Read more

Non-Convex Mixed-Integer Nonlinear Programming: A Survey

A wide range of problems arising in practical applications can be formulated as Mixed-Integer Nonlinear Programs (MINLPs). For the case in which the objective and constraint functions are convex, some quite effective exact and heuristic algorithms are available. When non-convexities are present, however, things become much more difficult, since then even the continuous relaxation is … Read more

On feasibility based bounds tightening

Mathematical programming problems involving nonconvexities are usually solved to optimality using a (spatial) Branch-and-Bound algorithm. Algorithmic efficiency depends on many factors, among which the widths of the bounding box for the problem variables at each Branch-and-Bound node naturally plays a critical role. The practically fastest box-tightening algorithm is known as FBBT (Feasibility-Based Bounds Tightening): an … Read more

Derivative-free methods for constrained mixed-integer optimization

We consider the problem of minimizing a continuously di erentiable function of several variables subject to simple bound and general nonlinear inequality constraints, where some of the variables are restricted to take integer values. We assume that the rst order derivatives of the objective and constraint functions can be neither calculated nor approximated explicitly. This class … Read more

On the generation of symmetry breaking constraints for mathematical programs

Mathematical programs whose formulation is symmetric often take a long time to solve using Branch-and-Bound type algorithms, because of the several symmetric optima. One of the techniques used to decrease the adverse effects of symmetry is adjoining symmetry breaking constraints to the formulation before solving the problem. These constraints aim to make some of the … Read more

An Outer-Inner Approximation for separable MINLPs

A common structure in convex mixed-integer nonlinear programs is additively separable nonlinear functions consisting of a sum of univariate functions. In the presence of such structures, we propose three improvements to the classical Outer Approximation algorithms that exploit separability. The first improvement is a simple extended formulation. The second a refined outer approximation. Finally, the … Read more

Inexact solution of NLP subproblems in MINLP

In the context of convex mixed-integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective NLP subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness … Read more

Inexact solution of NLP subproblems in MINLP

In the context of convex mixed-integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective NLP subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness … Read more