Semi-Continuous Cuts for Mixed-Integer Programming

We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Besides being important in its own right, the semi-continuous knapsack problem is a relaxation of general mixed-integer programming. We show how strong inequalities valid for the semi-continuous knapsack polyhedron can … Read more

The Network Packing Problem in Terrestrial Broadcasting

The introduction of digital technology all over Europe requires a complete and challenging re-planning of the actual terrestrial broadcasting system. In fact, in order to implement digital networks, transmitters and frequencies must be removed from the current analog networks. On the other hand, the service level (territory coverage) of analog networks must be preserved until … Read more

Valid inequalities based on simple mixed-integer sets

In this paper we use facets of mixed-integer sets with two and three variables to derive valid inequalities for integer sets defined by a single equation. These inequalities also define facets of the master cyclic group polyhedron of Gomory. Facets of this polyhedron give strong valid inequalities for general mixed-integer sets, such as the well-known … Read more

Lifting 2-integer knapsack inequalities

In this paper we discuss the generation of strong valid inequalities for (mixed) integer knapsack sets based on lifting of valid inequalities for basic knapsack sets with two integer variables (and one continuous variable). The description of the basic polyhedra can be made in polynomial time. We use superadditive valid functions in order to obtain … Read more

Safe bounds in linear and mixed-integer programming

Current mixed-integer linear programming solvers are based on linear programming routines that use floating point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. It is shown how, using directed rounding and interval arithmetic, cheap pre- and postprocessing of the linear programs arising in … Read more

A Polyhedral Study of the Cardinality Cosntrained Knapsack Problem

A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous … Read more

On Solving The Progressive Party Problem as a MIP

The `Progressive Party Problem’ [smith1995] has long been considered a problem intractable for branch-and-bound mixed integer solvers. Quite impressive results have been reported with constraint programming systems for this problem. As a result the problem has become a standard example in texts on constraint programming. Fortunately, there has been progress in the mixed integer programming … Read more

Optimal location of intermodal freight hubs

Attempts at reducing the externalities of freight transport in Europe are generally focused on the incorporation of a more significant use of rail into freight itineraries. One new scenario for increasing the share of rail in intermodal transport involves the development of a dedicated subnetwork of freight rail lines. Within this European Union project, the … Read more

Generating Convex Polynomial Inequalities for Mixed 0-1 Programs

We develop a method for generating valid convex polynomial inequalities for mixed 0-1 convex programs. We also show how these inequalities can be generated in the linear case by defining cut generation problems using a projection cone. The basic results for quadratic inequalities are extended to generate convex polynomial inequalities. Article Download View Generating Convex … Read more

A Family of Facets for the p-Median Polytope

We present a nontrivial family of facet-defining inequalities for the p-median polytope. We incorporate the inequalities in a branch-and-cut scheme, and we report computational results that demonstrate their effectiveness. Citation Department of Industrial Engineering, State University of New York at Buffalo, submitted Article Download View A Family of Facets for the p-Median Polytope