Maximum Utility Product Pricing Models and Algorithms Based on Reservation Prices

We consider a revenue management model for pricing a product line with several customer segments under the assumption that customers’ product choices are determined entirely by their reservation prices. We highlight key mathematical properties of the maximum utility model and formulate it as a mixed-integer programming problem, design heuristics and valid cuts. We further present … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more

Efficient Formulations for the Multi-Floor Facility Layout Problem with Elevators

The block layout problem for a multi-floor facility is an important sub class of the facility layout problem with practical applications when the price of land is high or when a compact building allows for more efficient environmental control. Several alternative formulations for the block layout problem of a multi-floor facility are presented, where the … Read more

MIP Reformulations of the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: $min \{ cx \ |\ {\mathbb P} (Ax\ge \xi) \ge p,\ x_{j}\in \{0,1\}^N\}$ where $A$ is a 0-1 matrix, $\xi$ is a random 0-1 vector and $p\in (0,1]$ is the threshold probability level. We formulate (PSC) as a mixed integer … Read more

The Mixing-MIR Set with Divisible Capacities

We study the set $S = \{(x, y) \in \Re_{+} \times Z^{n}: x + B_{j} y_{j} \geq b_{j}, j = 1, \ldots, n\}$, where $B_{j}, b_{j} \in \Re_{+} – \{0\}$, $j = 1, \ldots, n$, and $B_{1} | \cdots | B_{n}$. The set $S$ generalizes the mixed-integer rounding (MIR) set of Nemhauser and Wolsey and … Read more

Extreme inequalities for infinite group problems

In this paper we derive new properties of extreme inequalities for infinite group problems. We develop tools to prove that given valid inequalities for the infinite group problem are extreme. These results show that integer infinite group problems have discontinuous extreme inequalities. These inequalities are strong when compared to related classes of continuous extreme inequalities. … Read more

Using mixed-integer programming to solve power grid blackout problems

We consider optimization problems related to the prevention of large-scale cascading blackouts in power transmission networks subject to multiple scenarios of externally caused damage. We present computation with networks with up to 600 nodes and 827 edges, and many thousands of damage scenarios. Citation CORC Report TR-2005-07, Columbia University Article Download View Using mixed-integer programming … Read more

MIP-based heuristics for multi-item capacitated lot-sizing problem with setup times and shortage costs

We address a multi-item capacitated lot-sizing problem with setup times that arises in real-world production planning contexts. Demand cannot be backlogged, but can be totally or partially lost. Safety stock is an objective to reach rather than an industrial constraint to respect. The problem is NP-hard. A mixed integer mathematical formulation is presented. We propose … Read more

A special ordered set approach to discontinuous piecewise linear optimization

Piecewise linear functions (PLFs) are commonly used to approximate nonlinear functions. They are also of interest in their own, arising for example in problems with economies of scale. Early approaches to piecewise linear optimization (PLO) assumed continuous PLFs. They include the incremental cost MIP model of Markowitz and Manne and the convex combination MIP model … Read more

The multi-item capacitated lot-sizing problem with setup times and shortage costs

We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities … Read more