Recursive Trust-Region Methods for Multilevel Nonlinear Optimization (Part I): Global Convergence and Complexity

A class of trust-region methods is presented for solving unconstrained nonlinear and possibly nonconvex discretized optimization problems, like those arising in systems governed by partial differential equations. The algorithms in this class make use of the discretization level as a mean of speeding up the computation of the step. This use is recursive, leading to … Read more

Optimality Measures for Performance Profiles

We examine the importance of optimality measures when benchmarking a set of solvers, and show that scaling requirements lead to a convergence test for nonlinearly constrained optimization solvers that uses a mixture of absolute and relative error measures. We demonstrate that this convergence test is well behaved at any point where the constraints satisfy the … Read more

An algorithm model for mixed variable programming

In this paper we consider a particular class of nonlinear optimization problems involving both continuous and discrete variables. The distinguishing feature of this class of nonlinear mixed optimization problems is that the structure and the number of variables of the problem depend on the values of some discrete variables. In particular we define a general … Read more

On the Convergence of Successive Linear Programming Algorithms

We analyze the global convergence properties of a class of penalty methods for nonlinear programming. These methods include successive linear programming approaches, and more specifically the SLP-EQP approach presented in \cite{ByrdGoulNoceWalt02}. Every iteration requires the solution of two trust region subproblems involving linear and quadratic models, respectively. The interaction between the trust regions of these … Read more

New Classes of Globally Convexized Filled Functions for Global Optimization

We propose new classes of globally convexized filled functions. Unlike the globally convexized filled functions previously proposed in literature, the ones proposed in this paper are continuously differentiable and, under suitable assumptions, their unconstrained minimization allows to escape from any local minima of the original objective function. Moreover we show that the properties of the … Read more

iNEOS : An Interactive Environment for Nonlinear Optimization

In this paper we describe iNEOS, an Internet-based environment which facilitates the solution of complex nonlinear optimization problems. It enables a user to easily invoke a remote optimization code without having to supply the model to be optimized. An interactive communication between client and server is established and maintainted using CORBA. We test the system … Read more

Augmented self concordant barriers and nonlinear optimization problems with finite complexity

In this paper we study special barrier functions for the convex cones, which are the sum of a self-concordant barrier for the cone and a positive-semidefinite quadratic form. We show that the central path of these augmented barrier functions can be traced with linear speed. We also study the complexity of finding the analytic center … Read more

Failure of Global Convergence for a Class of Interior Point Methods for Nonlinear Programming

Using a simple analytical example, we demonstrate that a class of interior point methods for general nonlinear programming, including some current methods, is not globally convergent. It is shown that those algorithms do produce limit points that are neither feasible nor stationary points of some measure of the constraint violation, when applied to a well-posed … Read more