A relaxed constant positive linear dependence constraint qualification and applications

In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification from Minchenko and Stakhovski that was called RCR. We show that RCPLD is enough to ensure the convergence of an … Read more

Local path-following property of inexact interior methods in nonlinear programming

We study the local behavior of a primal-dual inexact interior point methods for solving nonlinear systems arising from the solution of nonlinear optimization problems or more generally from nonlinear complementarity problems. The algorithm is based on the Newton method applied to a sequence of perturbed systems that follows by perturbation of the complementarity equations of … Read more

A Gauss-Newton approach for solving constrained optimization problems using differentiable exact penalties

We propose a Gauss-Newton-type method for nonlinear constrained optimization using the exact penalty introduced recently by Andre and Silva for variational inequalities. We extend their penalty function to both equality and inequality constraints using a weak regularity assumption, and as a result, we obtain a continuously differentiable exact penalty function and a new reformulation of … Read more

Multidisciplinary Free Material Optimization

We present a mathematical framework for the so-called multidisciplinary free material optimization (MDFMO) problems, a branch of structural optimization in which the full material tensor is considered as a design variable. We extend the original problem statement by a class of generic constraints depending either on the design or on the state variables. Among the … Read more

A new sequential optimality condition for constrained optimization and algorithmic consequences

Necessary first-order sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. These conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constraint qual- i cations. A new strong sequential optimality condition is introduced in the present paper. A proof that a well established Augmented Lagrangian … Read more

A globally convergent modified conjugate-gradient line-search algorithm with inertia controlling

In this paper we have addressed the problem of unboundedness in the search direction when the Hessian is indefinite or near singular. A new algorithm has been proposed which naturally handles singular Hessian matrices, and is theoretically equivalent to the trust-region approach. This is accomplished by performing explicit matrix modifications adaptively that mimic the implicit … Read more

On sequential optimality conditions for smooth constrained optimization

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Approximate KKT and Approximate Gradient Projection conditions are analyzed in this work. These conditions are not necessarily equivalent. Implications between different conditions and counter-examples will be shown. Algorithmic consequences will be discussed. ArticleDownload View PDF

Switching stepsize strategies for PDIP

In this chapter we present a primal-dual interior point algorithm for solving constrained nonlinear programming problems. Switching rules are implemented that aim at exploiting the merits and avoiding the drawbacks of three different merit functions. The penalty parameter is determined using an adaptive penalty strategy that ensures a descent property for the merit function. The … Read more

Interior-point method for nonlinear programming with complementarity constraints

In this report, we propose an algorithm for solving nonlinear programming problems with com-plementarity constraints, which is based on the interior-point approach. Main theoretical results concern direction determination and step-length selection. We use an exact penalty function to remove complementarity constraints. Thus a new indefinite linear system is defined with a tridiagonal low-right submatrix. Inexact … Read more

The Constant Rank Condition and Second Order Constraint Qualifications

The Constant Rank condition for feasible points of nonlinear programming problems was defined by Janin in Ref. 1. In that paper the author proved that the condition was a first order constraint qualification. In this work we prove that the Janin Constant Rank condition is, in addition, a second order constraint qualification. We also define … Read more