Randomized Policy Optimization for Optimal Stopping

Optimal stopping is the problem of determining when to stop a stochastic system in order to maximize reward, which is of practical importance in domains such as finance, operations management and healthcare. Existing methods for high-dimensional optimal stopping that are popular in practice produce deterministic linear policies — policies that deterministically stop based on the … Read more

Equal Risk Pricing and Hedging of Financial Derivatives with Convex Risk Measures

In this paper, we consider the problem of equal risk pricing and hedging in which the fair price of an option is the price that exposes both sides of the contract to the same level of risk. Focusing for the first time on the context where risk is measured according to convex risk measures, we … Read more

Dynamic Evolution for Risk-Neutral Densities

Option price data is often used to infer risk-neutral densities for future prices of an underlying asset. Given the prices of a set of options on the same underlying asset with different strikes and maturities, we propose a nonparametric approach for estimating the evolution of the risk-neutral density in time. Our method uses bicubic splines … Read more

Pricing A Class of Multiasset Options using Information on Smaller Subsets of Assets

In this paper, we study the pricing problem for the class of multiasset European options with piecewise linear convex payoff in the asset prices. We derive a simple upper bound on the price of this option by constructing a static super-replicating portfolio using cash and options on smaller subsets of assets. The best upper bound … Read more

Static-arbitrage bounds on the prices of basket options via linear programming

We show that the problem of computing sharp upper and lower static-arbitrage bounds on the price of a European basket option, given the prices of other similar options, can be cast as a linear program (LP). The LP formulations readily yield super-replicating (sub-replicating) strategies for the upper (lower) bound problem. The dual counterparts of the … Read more

Extensions of Lo’s semiparametric bound for European call options

Computing semiparametric bounds for option prices is a widely studied pricing technique. In contrast to parametric pricing techniques, such as Monte-Carlo simulations, semiparametric pricing techniques do not re- quire strong assumptions about the underlying asset price distribution. We extend classical results in this area in two main directions. First, we derive closed-form semiparametric bounds for … Read more

Recovering Risk-Neutral Probability Density Functions from Options Prices using Cubic Splines

We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and … Read more