ε-Optimality in Reverse Optimization

The purpose of this paper is to completely characterize the global approximate optimality (ε-optimality) in reverse convex optimization under the general nonconvex constraint “h(x) ≥ 0″. The main condition presented is obtained in terms of Fenchel’s ε-subdifferentials thanks to El Maghri’s ε-efficiency in difference vector optimization [J. Glob. Optim. 61 (2015) 803–812], after converting the … Read more

(ε-)Efficiency in Fractional Vector Optimization

The issue of characterizing completely efficient (Pareto) solutions to a fractional vector (multiobjective or multicriteria) minimization problem, where the involved functions are convex, has not been addressed previously. Thanks to an earlier characterization of weak efficiency in difference vector optimization by El Maghri, we get a vectorial necessary and sufficient condition given in terms of … Read more

An Explicit Three-Term Polak-Ribière-Polyak Conjugate Gradient Method for Bicriteria Optimization

We propose in this paper a Polak-Ribière-Polyak conjugate gradient type method for solving bicriteria optimization problems by avoiding scalarization techniques. Two particular advantages in this contribution are to be noted. First, the suggested descent direction common to both criteria may be directly computed by a given formula without solving any intermediate subproblem. Second, the descent … Read more

An Explicit Spectral Fletcher-Reeves Conjugate Gradient Method for Bi-criteria Optimization

In this paper we propose a spectral Fletcher-Reeves conjugate gradient-like method (SFRCG) for solving unconstrained bi-criteria minimisation problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. This latter verifies furthermore a sufficient descent property which does not depend on the line search nor … Read more

A Reduced Jacobian Scheme with Full Convergence for Multicriteria Optimization

In this paper, we propose a variant of the reduced Jacobian method (RJM) introduced by El Maghri and Elboulqe in [JOTA, 179 (2018) 917–943] for multicriteria optimization under linear constraints. Motivation is that, contrarily to RJM which has only global convergence to Pareto KKT-stationary points in the classical sense of accumulation points, this new variant … Read more