First- and Second-Order Methods for Semidefinite Programming

In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have … Read more

A new iteration-complexity bound for the MTY predictor-corrector algorithm

In this paper we present a new iteration-complexity bound for the Mizuno-Todd-Ye predictor-corrector (MTY P-C) primal-dual interior-point algorithm for linear programming. The analysis of the paper is based on the important notion of crossover events introduced by Vavasis and Ye. For a standard form linear program $\min\{c^Tx : Ax=b, \, x \ge 0\}$ with decision … Read more

”Cone-Free” Primal-Dual Path-Following and Potential Reduction Polynomial Time Interior-Point Methods

We present a framework for designing and analyzing primal-dual interior-point methods for convex optimization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given good formulation of the … Read more

A primal-dual symmetric relaxation for homogeneous conic systems

We address the feasibility of the pair of alternative conic systems of constraints Ax = 0, x \in C, and -A^T y \in C^*, defined by an m by n matrix A and a cone C in the n-dimensional Euclidean space. We reformulate this pair of conic systems as a primal-dual pair of conic programs. … Read more

Feasible Interior Methods Using Slacks for Nonlinear Optimization

A slack-based feasible interior point method is described which can be derived as a modification of infeasible methods. The modification is minor for most line search methods, but trust region methods require special attention. It is shown how the Cauchy point, which is often computed in trust region methods, must be modified so that the … Read more

A BFGS-IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach

This paper introduces and analyses a new algorithm for minimizing a convex function subject to a finite number of convex inequality constraints. It is assumed that the Lagrangian of the problem is strongly convex. The algorithm combines interior point methods for dealing with the inequality constraints and quasi-Newton techniques for accelerating the convergence. Feasibility of … Read more