On Relatively Smooth Optimization over Riemannian Manifolds

We study optimization over Riemannian embedded submanifolds, where the objective function is relatively smooth in the ambient Euclidean space. Such problems have broad applications but are still largely unexplored. We introduce two Riemannian first-order methods, namely the retraction-based and projection-based Riemannian Bregman gradient methods, by incorporating the Bregman distance into the update steps. The retraction-based … Read more

A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite Optimization

We study a stochastic first order primal-dual method for solving convex-concave saddle point problems over real reflexive Banach spaces using Bregman divergences and relative smoothness assumptions, in which we allow for stochastic error in the computation of gradient terms within the algorithm. We show ergodic convergence in expectation of the Lagrangian optimality gap with a … Read more