The Globally Uniquely Solvable Property of Second-Order Cone Linear Complementarity Problems

The globally uniquely solvable (GUS) property of the linear transformation of the linear complementarity problems over symmetric cones has been studied recently by Gowda et al. via the approach of Euclidean Jordan algebra. In this paper, we contribute a new approach to characterizing the GUS property of the linear transformation of the second-order cone linear … Read more

An LMI description for the cone of Lorentz-positive maps II

Let L_n be the n-dimensional second order cone. A linear map from R^m to R^n is called positive if the image of L_m under this map is contained in L_n. For any pair (n,m) of dimensions, the set of positive maps forms a convex cone. We construct a linear matrix inequality of size (n-1)(m-1) that … Read more

On the Second-Order Feasibility Cone: Primal-Dual Representation and Efficient Projection

We study the second-order feasibility cone F = { y : \| My \| \le g^Ty } for given data (M,g). We construct a new representation for this cone and its dual based on the spectral decomposition of the matrix M^TM – gg^T. This representation is used to efficiently solve the problem of projecting an … Read more

An LMI description for the cone of Lorentz-positive maps

Let $L_n$ be the $n$-dimensional second order cone. A linear map from $\mathbb R^m$ to $\mathbb R^n$ is called positive if the image of $L_m$ under this map is contained in $L_n$. For any pair $(n,m)$ of dimensions, the set of positive maps forms a convex cone. We construct a linear matrix inequality (LMI) that … Read more

A primal-dual interior point method for nonlinear optimization over second order cones

In this paper, we are concerned with nonlinear minimization problems with second order cone constraints. A primal-dual interior point method is proposed for solving the problems. We also propose a new primal-dual merit function by combining the barrier penalty function and the potential function within the framework of the line search strategy, and show the … Read more

A second-order cone cutting surface method: complexity and application

We present an analytic center cutting surface algorithm that uses mixed linear and multiple second-order cone cuts. Theoretical issues and applications of this technique are discussed. From the theoretical viewpoint, we derive two complexity results. We show that an approximate analytic center can be recovered after simultaneously adding $p$ second-order cone cuts in $O(p\log(p+1))$ Newton … Read more

An Algorithm for Perturbed Second-order Cone Programs

The second-order cone programming problem is reformulated into several new systems of nonlinear equations. Assume the perturbation of the data is in a certain neighborhood of zero. Then starting from a solution to the old problem, the semismooth Newton’s iterates converge Q-quadratically to a solution of the perturbed problem. The algorithm is globalized. Numerical examples … Read more

An interior point cutting plane method for convex feasibility problem with second-order cone inequalities

Convex feasibility problem in general, is a problem of finding a point in a convex set contains a full dimensional ball and is contained in a compact convex set. We assume that the outer set is described by second-order cone inequalities and propose an analytic center cutting plane technique to solve this problem. We discuss … Read more

On implementing a primal-dual interior-point method for conic quadratic optimization

Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic … Read more