Noisy Euclidean distance realization: robust facial reduction and the Pareto frontier

We present two algorithms for large-scale low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and parallelizable. Our second algorithm is a first order method … Read more

Comparing SOS and SDP relaxations of sensor network localization

We investigate the relationships between various sum of squares (SOS) and semidefinite programming (SDP) relaxations for the sensor network localization problem. In particular, we show that Biswas and Ye’s SDP relaxation is equivalent to the degree one SOS relaxation of Kim et al. We also show that Nie’s sparse-SOS relaxation is stronger than the edge-based … Read more

Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions

The sensor network localization, SNL, problem in embedding dimension r, consists of locating the positions of wireless sensors, given only the distances between sensors that are within radio range and the positions of a subset of the sensors (called anchors). Current solution techniques relax this problem to a weighted, nearest, (positive) semidefinite programming, SDP, completion … Read more

Semidefinite Programming Approaches to Distance Geometry Problems

Given a subset of all the pair-wise distances between a set of points in a fixed dimension, and possibly the positions of few of the points (called anchors), can we estimate the (relative) positions of all the unknown points (in the given dimension) accurately? This problem is known as the Euclidean Distance Geometry or Graph … Read more

Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization

We study Semidefinite Programming, \SDPc relaxations for Sensor Network Localization, \SNLc with anchors and with noisy distance information. The main point of the paper is to view \SNL as a (nearest) Euclidean Distance Matrix, \EDM, completion problem and to show the advantages for using this latter, well studied model. We first show that the current … Read more

Semidefinite Programming Based Algorithms for Sensor Network Localization

An SDP relaxation based method is developed to solve the localization problem in sensor networks using incomplete and inaccurate distance information. The problem is set up to find a set of sensor positions such that given distance constraints are satisfied. The nonconvex constraints in the formulation are then relaxed in order to yield a semidefinite … Read more

Sum of Squares Method for Sensor Network Localization

We formulate the sensor network localization problem as finding the global minimizer of a quartic polynomial. Then sum of squares (SOS) relaxations can be applied to solve it. However, the general SOS relaxations are too expensive to implement for large problems. Exploiting the special features of this polynomial, we propose a new structured SOS relaxation, … Read more

Robust Semidefinite Programming Approaches for Sensor Network Localization with Anchors

We derive a robust primal-dual interior-point algorithm for a semidefinite programming, SDP, relaxation for sensor localization with anchors and with noisy distance information. The relaxation is based on finding a Euclidean Distance Matrix, EDM, that is nearest in the Frobenius norm for the known noisy distances and that satisfies given upper and lower bounds on … Read more