The Facility Location Problem with Bernoulli Demands

In this paper we address a discrete capacitated facility location problem in which customers have Bernoulli demands. The problem is formulated as a two-stage stochastic program. The goal is to define an a priori solution for the location of the facilities and for the allocation of customers to the operating facilities that minimize the expected … Read more

Efficient Methods for Stochastic Composite Optimization

This paper considers an important class of convex programming problems whose objective function $\Psi$ is given by the summation of a smooth and non-smooth component. Further, it is assumed that the only information available for the numerical scheme to solve these problems is the subgradient of $\Psi$ contaminated by stochastic noise. Our contribution mainly consists … Read more

Scalable Heuristics for Stochastic Programming with Scenario Selection

We describe computational procedures to solve a wide-ranging class of stochastic programs with chance constraints where the random components of the problem are discretely distributed. Our procedures are based on a combination of Lagrangian relaxation and scenario decomposition, which we solve using a novel variant of Rockafellar and Wets’ progressive hedging algorithm. Experiments demonstrate the … Read more

Validation Analysis of Robust Stochastic Approximation Method

The main goal of this paper is to develop accuracy estimates for stochastic programming problems by employing robust stochastic approximation (SA) type algorithms. To this end we show that while running a Robust Mirror Descent Stochastic Approximation procedure one can compute, with a small additional effort, lower and upper statistical bounds for the optimal objective … Read more

Algorithms for stochastic lot-sizing problems with backlogging

As a traditional model in the operations research and management science domain, lot-sizing problem is embedded in many application problems such as production and inventory planning and has been consistently drawing attentions from researchers. There is significant research progress on polynomial time algorithm developments for deterministic uncapacitated lot-sizing problems based on Wagner-and-Whitin property. However, in … Read more

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse

This paper introduces disjunctive decomposition for two-stage mixed 0-1 stochastic integer programs (SIPs) with random recourse. Disjunctive decomposition allows for cutting planes based on disjunctive programming to be generated for each scenario subproblem under a temporal decomposition setting of the SIP problem. A new class of valid inequalities for mixed 0-1 SIP with random recourse … Read more

A difference of convex formulation of value-at-risk constrained optimization

In this article, we present a representation of value-at-risk (VaR) as a difference of convex (D.C.) functions in the case where the distribution of the underlying random variable is discrete and has finitely many atoms. The D.C. representation is used to study a financial risk-return portfolio selection problem with a VaR constraint. A branch-and-bound algorithm … Read more

On Adaptive Multicut Aggregation for Two-Stage Stochastic Linear Programs with Recourse

Outer linearization methods for two-stage stochastic linear programs with recourse, such as the L-shaped algorithm,generally apply a single optimality cut on the nonlinear objective at each major iteration, while the multicut version of the algorithm allows for several cuts to be placed at once. In general, the L-shaped algorithm tends to have more major iterations … Read more

New Formulations for Optimization Under Stochastic Dominance Constraints

Stochastic dominance constraints allow a decision-maker to manage risk in an optimization setting by requiring their decision to yield a random outcome which stochastically dominates a reference random outcome. We present new integer and linear programming formulations for optimization under first and second-order stochastic dominance constraints, respectively. These formulations are more compact than existing formulations, … Read more

Stochastic Approximation approach to Stochastic Programming

In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte … Read more