A Tractable Approximation of Stochastic Programming via Robust Optimization

Stochastic programming, despite its immense modeling capabilities, is well known to be computationally excruciating. In this paper, we introduce a unified framework of approximating multiperiod stochastic programming from the perspective of robust optimization. Specifically, we propose a framework that integrates multistage modeling with safeguarding constraints. The framework is computationally tractable in the form of second … Read more

A Robust Optimization Framework for Analyzing Distribution Systems with Transshipment

This paper studies a distribution system consisting of multiple retail locations with transshipment operations among the retailers. Due to the difficulty in computing the optimal solution imposed by the transshipment operations and in estimating shortage cost from a practical perspective, we propose a robust optimization framework for analyzing the impact of transshipment operations on such … Read more

Uniform Laws of Large Numbers for Set-Valued Mappings and Subdifferentials of Random Functions

We derive a uniform (strong) Law of Large Numbers (LLN) for random set-valued mappings. The result can be viewed as an extension of both, a uniform LLN for random functions and LLN for random sets. We apply the established results to a consistency analysis of stationary points of sample average approximations of nonsmooth stochastic programs. … Read more

On the Implementation of Interior Point Decomposition Algorithms for Two-Stage Stochastic Conic

In this paper we develop a practical primal interior decomposition algorithm for two-stage stochastic programming problems. The framework of this algorithm is similar to the framework in Mehrotra and \”{Ozevin} \cite{MO04a,MO04b} and Zhao \cite{GZ01}, however their algorithm is altered in a simple yet fundamental way to achieve practical performance. In particular, this new algorithm weighs … Read more

A Robust Optimization Perspective of Stochastic Programming

In this paper, we introduce an approach for constructing uncertainty sets for robust optimization using new deviation measures for bounded random variables known as the forward and backward deviations. These deviation measures capture distributional asymmetry and lead to better approximations of chance constraints. We also propose a tractable robust optimization approach for obtaining robust solutions … Read more

Non-Linear Stochastic Fractional Programming Models of Financial Derivatives

Non-Linear Stochastic Fractional programming models provide numerous insights into a wide variety of areas such as in financial derivatives. Portfolio optimization has been one of the important research fields in modern finance. The most important character within this optimization problem is the uncertainty of the future returns on assets. The objective of this study is … Read more

Linear Stochastic Fractional Programming with Sum-of-Probabilistic-Fractional Objective

Fractional programming deals with the optimization of one or several ratios of functions subject to constraints. Most of these optimization problems are not convex while some of them are still generalised convex. After about forty years of research, well over one thousand articles have appeared on applications, theory and solution methods for various types of … Read more

Stochastic Mathematical Programs with Equilibrium Constraints, Modeling and Sample Average Approximation

In this paper, we discuss the sample average approximation (SAA) method applied to a class of stochastic mathematical programs with variational (equilibrium) constraints. To this end, we briefly investigate piecewise structure and directional differentiability of both — the lower level equilibrium solution and objective integrant. We show almost sure convergence of optimal values, optimal solutions … Read more

On Complexity of Multistage Stochastic Programs

In this paper we derive estimates of the sample sizes required to solve a multistage stochastic programming problem with a given accuracy by the (conditional sampling) sample average approximation method. The presented analysis is self contained and is based on a, relatively elementary, one dimensional Cramer’s Large Deviations Theorem. Citation Working paper, Georgia Institute of … Read more

Two-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods

We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results of Zhao, who showed that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrier on the first … Read more