Polyhedral Analysis of Quadratic Optimization Problems with Stieltjes Matrices and Indicators

In this paper, we consider convex quadratic optimization problems with indicators on the continuous variables. In particular, we assume that the Hessian of the quadratic term is a Stieltjes matrix, which naturally appears in sparse graphical inference problems and others. We describe an explicit convex formulation for the problem by studying the Stieltjes polyhedron arising … Read more

Joint Inventory and Revenue Management with Removal Decisions

We study the problem of a retailer that maximizes profit through joint replenishment, pricing and removal decisions. This problem is motivated by the observation that retailers usually retain rights to remove inventory from their network either by returning it to the suppliers or through liquidation in the face of random demand and capacity constraints. We … Read more

Supermodularity and Affine Policies in Dynamic Robust Optimization

This paper considers robust dynamic optimization problems, where the unknown parameters are modeled as uncertainty sets. We seek to bridge two classical paradigms for solving such problems, namely (1) Dynamic Programming (DP), and (2) policies parameterized in model uncertainties (also known as decision rules), obtained by solving tractable convex optimization problems. We provide a set … Read more

Probabilistic Set Covering with Correlations

We consider a probabilistic set covering problem where there is uncertainty regarding whether a selected set can cover an item, and the objective is to determine a minimum-cost combination of sets so that each item is covered with a pre-specified probability. To date, literature on this problem has focused on the special case in which … Read more

Explicit Convex and Concave Envelopes through Polyhedral Subdivisions

In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of … Read more