Sufficient weighted complementarity problems

This paper presents some fundamental results about sufficient linear weighted complementarity problems. Such a problem depends on a nonnegative weight vector. If the weight vector is zero, the problem reduces to a sufficient linear complementarity problem that has been extensively studied. The introduction of the more general notion of a weighted complementarity problem (wCP) was … Read more

An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions

We propose a forward-backward proximal-type algorithm with inertial/memory effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. The sequence of iterates generated by the algorithm converges to a critical point of the objective function provided an appropriate regularization of the objective satisfies the Kurdyka-Lojasiewicz inequality, which is … Read more

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced … Read more

Multi-stage adjustable robust mixed-integer optimization via iterative splitting of the uncertainty set

In this paper we propose a methodology for constructing decision rules for integer and continuous decision variables in multiperiod robust linear optimization problems. This type of problems finds application in, for example, inventory management, lot sizing, and manpower management. We show that by iteratively splitting the uncertainty set into subsets one can differentiate the later-period … Read more

Planar Maximum Coverage Location Problem with Partial Coverage and Rectangular Demand and Service Zones

We study the planar maximum coverage location problem (MCLP) with rectilinear distance and rectangular demand zones in the case where “partial coverage” is allowed in its true sense, i.e., when covering only part of a demand zone is allowed and the coverage accrued as a result of this is proportional to the demand of the … Read more

Solving bilevel combinatorial optimization as bilinear min-max optimization via a branch-and-cut algorithm

In this paper, we propose a generic branch-and -cut algorithm for a special class of bi-level combinatorial optimization problems. Namely, we study such problems that can be reformulated as bilinear min-max combinatorial optimization problems. We show that the reformulation can be efficiently solved by a branch-and-cut algorithm whose cuts represent the inner maximization feasibility set. … Read more

Douglas-Rachford splitting for nonconvex feasibility problems

We adapt the Douglas-Rachford (DR) splitting method to solve nonconvex feasibility problems by studying this method for a class of nonconvex optimization problem. While the convergence properties of the method for convex problems have been well studied, far less is known in the nonconvex setting. In this paper, for the direct adaptation of the method … Read more

Weak and Strong Superiorization: Between Feasibility-Seeking and Minimization

We review the superiorization methodology, which can be thought of, in some cases, as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to an objective function value) to one returned … Read more