Inexact alternating projections on nonconvex sets

Given two arbitrary closed sets in Euclidean space, a simple transversality condition guarantees that the method of alternating projections converges locally, at linear rate, to a point in the intersection. Exact projection onto nonconvex sets is typically intractable, but we show that computationally-cheap inexact projections may suffice instead. In particular, if one set is defined … Read more

A Data-Driven Approach to Multi-Stage Stochastic Linear Optimization

We propose a new data-driven approach for addressing multi-stage stochastic linear optimization problems with unknown distributions. The approach consists of solving a robust optimization problem that is constructed from sample paths of the underlying stochastic process. We provide asymptotic bounds on the gap between the optimal costs of the robust optimization problem and the underlying … Read more

Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints

We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems with general inexpensive constraints, i.e.\ problems where the cost of evaluating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible compared to that of evaluating the objective function. These bounds unify, extend or improve all known upper and lower complexity bounds … Read more

Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1) Per-Iteration Complexity

Regularized empirical risk minimization problem with linear predictor appears frequently in machine learning. In this paper, we propose a new stochastic primal-dual method to solve this class of problems. Different from existing methods, our proposed methods only require O(1) operations in each iteration. We also develop a variance-reduction variant of the algorithm that converges linearly. … Read more

n-step cutset inequalities: facets for multi-module capacitated network design problem

Many real-world decision-making problems can be modeled as network design problems, especially on networks with capacity requirements on links. In network design problems, decisions are made on installation of flow transfer capacities on the links and routing of flow from a set of source nodes to a set of sink nodes through the links. Many … Read more

Proximal Gradient Method for Nonsmooth Optimization over the Stiefel Manifold

We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this kind of problems can be classified into three classes. Algorithms in the first class rely on information of the subgradients of the objective function and thus tend to … Read more

A new combinatorial algorithm for separable convex resource allocation with nested bound constraints

The separable convex resource allocation problem with nested bound constraints aims to allocate $B$ units of resources to $n$ activities to minimize a separable convex cost function, with lower and upper bounds on the total amount of resources that can be consumed by nested subsets of activities. We develop a new combinatorial algorithm to solve … Read more

Enhancing large neighbourhood search heuristics for Benders’ decomposition

A general enhancement of the Benders’ decomposition (BD) algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, few, if any, have been designed for BD. Further, typically the use of large neighbourhood search … Read more