Deriving robust counterparts of nonlinear uncertain inequalities

In this paper we provide a systematic way to construct the robust counterpart of a nonlinear uncertain inequality that is concave in the uncertain parameters. We use convex analysis (support functions, conjugate functions, Fenchel duality) and conic duality in order to convert the robust counterpart into an explicit and computationally tractable set of constraints. It … Read more

Robust solutions of optimization problems affected by uncertain probabilities

In this paper we focus on robust linear optimization problems with uncertainty regions defined by phi-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show how uncertainty regions based on phi-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization … Read more

Hidden convexity in partially separable optimization

The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some … Read more

Hidden convexity in partially separable optimization

The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some … Read more

Immunizing conic quadratic optimization problems against implementation errors

We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be … Read more

On Safe Tractable Approximations of Chance Constrained Linear Matrix Inequalities

In the paper, we consider the chance constrained version $$ \Prob\{A_0[x]+\sum_{i=1}^d\zeta_i A_i[x]\succeq0\}\geq1-\epsilon, $$ of an affinely perturbed Linear Matrix Inequality constraint; here $A_i[x]$ are symmetric matrices affinely depending on the decision vector $x$, and $\zeta_1,…,\zeta_d$ are independent of each other random perturbations with light tail distributions (e.g., bounded or Gaussian). Constraints of this type, playing … Read more

Selected Topics in Robust Convex Optimization

Robust Optimization is a rapidly developing methodology for handling optimization problems affected by non-stochastic “uncertain-but-bounded” data perturbations. In this paper, we overview several selected topics in this popular area, specifically, (1) recent extensions of the basic concept of {\sl robust counterpart} of an optimization problem with uncertain data, (2) tractability of robust counterparts, (3) links … Read more

On Time-Invariant Purified-Output-Based Discrete Time Control

In http://www.optimizationonline.org/DB_HTML/2005/05/1136.html 05/25/05, we have demonstrated that the family of all affine non-anticipative output-based control laws in a discrete time linear dynamical system affected by uncertain disturbances is equivalent, as far as state-control trajectories are concerned, to the family of all affine non-anticipative “purified-output-based” control laws. The advantage of the latter representation of affine controls … Read more

Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems

In this paper, we propose a new methodology for handling optimization problems with uncertain data. With the usual Robust Optimization paradigm, one looks for the decisions ensuring a required performance for all realizations of the data from a given bounded uncertainty set, whereas with the proposed approach, we require also a controlled deterioration in performance … Read more