An improved projection and rescaling algorithm for conic feasibility problems

Motivated by Chubanov’s projection-based method for linear feasibility problems [Chubanov2015], a projection and rescaling algorithm for the conic feasibility problem \[ find \; x\in L\bigcap \Omega \] is proposed in [Pena2016], where $L$ and $\Omega$ are respectively a linear subspace and the interior of a symmetric cone in a finitely dimensional vector space $V$. When … Read more

Using Nemirovski’s Mirror-Prox method as Basic Procedure in Chubanov’s method for solving homogeneous feasibility problems

We introduce a new variant of Chubanov’s method for solving linear homogeneous systems with positive variables. In the \BP\ we use a recently introduced cut in combination with Nemirovski’s Mirror-Prox method. We show that the cut requires at most $O(n^3)$ time, just as Chabonov’s cut. In an earlier paper it was shown that the new … Read more

On the Fermat point of a triangle

For a given triangle $\triangle ABC$, Pierre de Fermat posed around 1640 the problem of finding a point $P$ minimizing the sum $s_P$ of the Euclidean distances from $P$ to the vertices $A$, $B$, $C$. Based on geometrical arguments this problem was first solved by Torricelli shortly after, by Simpson in 1750, and by several … Read more

An improved version of Chubanov’s method for solving a homogeneous feasibility problem

We deal with a recently proposed method of Chubanov [1] for solving linear homogeneous systems with positive variables. Some improvements of Chubanov’s method and its analysis are presented. We propose a new and simple cut criterion and show that the cuts defined by the new criterion are at least as sharp as in [1]. The … Read more

A universal and structured way to derive dual optimization problem formulations

The dual problem of a convex optimization problem can be obtained in a relatively simple and structural way by using a well-known result in convex analysis, namely Fenchel’s duality theorem. This alternative way of forming a strong dual problem is the subject in this paper. We recall some standard results from convex analysis and then … Read more

A Polynomial Column-wise Rescaling von Neumann Algorithm

Recently Chubanov proposed a method which solves homogeneous linear equality systems with positive variables in polynomial time. Chubanov’s method can be considered as a column-wise rescaling procedure. We adapt Chubanov’s method to the von Neumann problem, and so we design a polynomial time column-wise rescaling von Neumann algorithm. This algorithm is the first variant of … Read more

An improved and simplified full-Newton step O(n) infeasible interior-point method for Linear Optimization

We present an improved version of an infeasible interior-point method for linear optimization published in 2006. In the earlier version each iteration consisted of one so-called infeasibility step and a few – at most three – centering steps. In this paper each iteration consists of only a infeasibility step, whereas the iteration bound improves the … Read more

Counter Example to A Conjecture on Infeasible Interior-Point Methods

Based on extensive computational evidence (hundreds of thousands of randomly generated problems) the second author conjectured that $\bar{\kappa}(\zeta)=1$, which is a factor of $\sqrt{2n}$ better than that has been proved, and which would yield an $O(\sqrt{n})$ iteration full-Newton step infeasible interior-point algorithm. In this paper we present an example showing that $\bar{\kappa}(\zeta)$ is in the … Read more

Full Nesterov-Todd Step Interior-Point Methods for Symmetric Optimization

Some Jordan algebras were proved more than a decade ago to be an indispensable tool in the unified study of interior-point methods. By using it, we generalize the infeasible interior-point method for linear optimization of Roos [SIAM J. Optim., 16(4):1110–1136 (electronic), 2006] to symmetric optimization. This unifies the analysis for linear, second-order cone and semidefinite … Read more