Exact semidefinite programming bounds for packing problems

In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that certain optimal packing configurations are … Read more

Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of our hierarchies, compare them … Read more

Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization

In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a quantum … Read more

Moment methods in energy minimization: New bounds for Riesz minimal energy problems

We use moment methods to construct a converging hierarchy of optimization problems to lower bound the ground state energy of interacting particle systems. We approximate the infinite dimensional optimization problems in this hierarchy by block diagonal semidefinite programs. For this we develop the necessary harmonic analysis for spaces consisting of subsets of another space, and … Read more

Matrices with high completely positive semidefinite rank

A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M, and it is an open question whether there exists an upper bound on this number as a function of … Read more

A semidefinite programming hierarchy for packing problems in discrete geometry

Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre’s semidefinite programming hierarchy. We generalize … Read more

Upper bounds for packings of spheres of several radii

We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We … Read more