## Asset liability management under sequential stochastic dominance constraints

Article Download View Asset liability management under sequential stochastic dominance constraints

Article Download View Asset liability management under sequential stochastic dominance constraints

We show that the main results of the expected utility and dual utility theories can be derived in a unified way from two fundamental mathematical ideas: the separation principle of convex analysis, and integral representations of continuous linear functionals from functional analysis. Our analysis reveals the dual character of utility functions. We also derive new … Read more

We derive representations of higher order dual measures of risk in $\mathcal{L}^p$ spaces as suprema of integrals of Average Values at Risk with respect to probability measures on $(0,1]$ (Kusuoka representations). The suprema are taken over convex sets of probability measures. The sets are described by constraints on the dual norms of certain transformations of … Read more

We consider sets defined by the usual stochastic ordering relation and by the second order stochastic dominance relation. Under fairy general assumptions we prove that in the space of integrable random variables the closed convex hull of the first set is equal to the second set. Article Download View Convexification of Stochastic Ordering

We consider the problem of constructing a portfolio of finitely many assets whose returns are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustration … Read more