Euler Polytopes and Convex Matroid Optimization

Del Pia and Michini recently improved the upper bound of kd due to Kleinschmidt and Onn for the largest possible diameter of the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. We introduce Euler polytopes which include a family of lattice polytopes with diameter (k+1)d/2, … Read more

A primal-simplex based Tardos’ algorithm

In the mid-eighties Tardos proposed a strongly polynomial algorithm for solving linear programming problems for which the size of the coefficient matrix is polynomially bounded by the dimension. Combining Orlin’s primal-based modification and Mizuno’s use of the simplex method, we introduce a modification of Tardos’ algorithm considering only the primal problem and using simplex method … Read more

Global Routing in VLSI Design: Algorithms, Theory, and Computational Practice

Global routing in VLSI (very large scale integration) design is one of the most challenging discrete optimization problems in computational theory and practice. In this paper, we present a polynomial time algorithm for the global routing problem based on integer programming formulation with a theoretical approximation bound. The algorithm ensures that all routing demands are … Read more

The continuous d-step conjecture for polytopes

The curvature of a polytope, defined as the largest possible total curvature of the associated central path, can be regarded as the continuous analogue of its diameter. We prove the analogue of the result of Klee and Walkup. Namely, we show that if the order of the curvature is less than the dimension $d$ for … Read more

Hyperplane Arrangements with Large Average Diameter

The largest possible average diameter of a bounded cell of a simple hyperplane arrangement is conjectured to be not greater than the dimension. We prove that this conjecture holds in dimension 2, and is asymptotically tight in fixed dimension. We give the exact value of the largest possible average diameter for all simple arrangements in … Read more

Central path curvature and iteration-complexity for redundant Klee-Minty cubes

We consider a family of linear optimization problems over the n-dimensional Klee-Minty cube and show that the central path may visit all of its vertices in the same order as simplex methods do. This is achieved by carefully adding an exponential number of redundant constraints that forces the central path to take at least 2^n-2 … Read more

Polytopes and Arrangements : Diameter and Curvature

We introduce a continuous analogue of the Hirsch conjecture and a discrete analogue of the result of Dedieu, Malajovich and Shub. We prove a continuous analogue of the result of Holt and Klee, namely, we construct a family of polytopes which attain the conjectured order of the largest total curvature. Citation AdvOL-Report #2006/09 Advanced Optimization … Read more

How good are interior point methods? Klee-Minty cubes tighten iteration-complexity bounds.

By refining a variant of the Klee-Minty example that forces the central path to visit all the vertices of the Klee-Minty n-cube, we exhibit a nearly worst-case example for path-following interior point methods. Namely, while the theoretical iteration-complexity upper bound is O(2^{n}n^{\frac{5}{2}}), we prove that solving this n-dimensional linear optimization problem requires at least $2^n-1$ … Read more