A Steepest Descent Method for Set Optimization Problems with Set-Valued Mappings of Finite Cardinality

In this paper, we study a first-order solution method for a particular class of set optimization problems where the solution concept is given by the set approach. We consider the case in which the set-valued objective mapping is identified by a finite number of continuously differentiable selections. The corresponding set optimization problem is then equivalent … Read more

The Fermat Rule for Set Optimization Problems with Lipschitzian Set-Valued Mappings

n this paper, we consider set optimization problems with respect to the set approach. Specifically, we deal with the lower less and the upper less set relations. First, we derive properties of convexity and Lipschitzianity of suitable scalarizing functionals, under the same assumption on the set-valued objective mapping. We then obtain upper estimates of the … Read more

A Unified Characterization of Nonlinear Scalarizing Functionals in Optimization

Over the years, several classes of scalarization techniques in optimization have been introduced and employed in deriving separation theorems, optimality conditions and algorithms. In this paper, we study the relationships between some of those classes in the sense of inclusion. We focus on three types of scalarizing functionals (by Hiriart-Urruty, Drummond and Svaiter, Gerstewitz) and … Read more

An inexact strategy for the projected gradient algorithm in vector optimization problems on variable ordered spaces

Variable order structures model situations in which the comparison between two points depends on a point-to-cone map. In this paper, an inexact projected gradient method for solving smooth constrained vector optimization problems on variable ordered spaces is presented. It is shown that every accumulation point of the generated sequence satisfies the first order necessary optimality … Read more

The inexact projected gradient method for quasiconvex vector optimization problems

Vector optimization problems are a generalization of multiobjective optimization in which the preference order is related to an arbitrary closed and convex cone, rather than the nonnegative octant. Due to its real life applications, it is important to have practical solution approaches for computing. In this work, we consider the inexact projected gradient-like method for … Read more

Stochastic approaches for solving Rapid Transit Network Design models with random demand

We address rapid transit network design problems characterized by uncertainty in the input data. Network design has a determinant impact on the future e ective- ness of the system. Design decisions are made with a great degree of uncertainty about the conditions under which the system will be required to operate. The de- mand is one … Read more