Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming

The constant rank constraint qualification, introduced by Janin in 1984 for nonlinear programming, has been extensively used for sensitivity analysis, global convergence of first- and second-order algorithms, and for computing the derivative of the value function. In this paper we discuss naive extensions of constant rank-type constraint qualifications to second-order cone programming and semidefinite programming, … Read more

On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees

This paper discusses the use of a stopping criterion based on the scaling of the Karush-Kuhn-Tucker (KKT) conditions by the norm of the approximate Lagrange multiplier in the ALGENCAN implementation of a safeguarded augmented Lagrangian method. Such stopping criterion is already used in several nonlinear programming solvers, but it has not yet been considered in … Read more

On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming

Second-order necessary optimality conditions for nonlinear conic programming problems that depend on a single Lagrange multiplier are usually built under nondegeneracy and strict complementarity. In this paper we establish a condition of such type for two classes of nonlinear conic problems, namely semidefinite and second-order cone programming, assuming Robinson’s constraint qualification and a generalized form … Read more

On the best achievable quality of limit points of augmented Lagrangian schemes

The optimization literature is vast in papers dealing with improvements on the global convergence of augmented Lagrangian schemes. Usually, the results are based on weak constraint qualifications, or, more recently, on sequential optimality conditions obtained via penalization techniques. In this paper we propose a somewhat different approach, in the sense that the algorithm itself is … Read more

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate … Read more

Constraint Qualifications for Karush-Kuhn-Tucker Conditions in Constrained Multiobjective Optimization

The notion of a normal cone of a given set is paramount in optimization and variational analysis. In this work, we give a definition of a multiobjective normal cone which is suitable for studying optimality conditions and constraint qualifications for multiobjective optimization problems. A detailed study of the properties of the multiobjective normal cone is … Read more

On optimality conditions for nonlinear conic programming

Sequential optimality conditions have played a major role in proving stronger global convergence results of numerical algorithms for nonlinear programming. Several extensions have been described in conic contexts, where many open questions have arisen. In this paper, we present new sequential optimality conditions in the context of a general nonlinear conic framework, which explains and … Read more

On Constraint Qualifications for Second-Order Optimality Conditions Depending on a Single Lagrange Multiplier.

Second-order optimality conditions play an important role in continuous optimization. In this paper, we present and discuss new constraint qualifications to ensure the validity of some well-known second-order optimality conditions. Our main interest is on second-order conditions that can be associated with numerical methods for solving constrained optimization problems. Such conditions depend on a single … Read more

Optimality conditions for nonlinear second-order cone programming and symmetric cone programming

Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semidefinite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush-Kuhn-Tucker conditions under a condition weaker than Robinson’s constraint qualification. In addition, we show the relationship … Read more

An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem

In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting the … Read more