On the convergence of iterative schemes for solving a piecewise linear system of equations

This paper is devoted to studying the global and finite convergence of the semi-smooth Newton method for solving a piecewise linear system that arises in cone-constrained quadratic programming problems and absolute value equations. We first provide a negative answer via a counterexample to a conjecture on the global and finite convergence of the Newton iteration … Read more

Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming

In [R. Andreani, G. Haeser, L. M. Mito, H. Ramírez C., Weak notions of nondegeneracy in nonlinear semidefinite programming, arXiv:2012.14810, 2020] the classical notion of nondegeneracy (or transversality) and Robinson’s constraint qualification have been revisited in the context of nonlinear semidefinite programming exploiting the structure of the problem, namely, its eigendecomposition. This allows formulating the … Read more

First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition

The well known constant rank constraint qualification [Math. Program. Study 21:110–126, 1984] introduced by Janin for nonlinear programming has been recently extended to a conic context by exploiting the eigenvector structure of the problem. In this paper we propose a more general and geometric approach for defining a new extension of this condition to the … Read more

Sequential constant rank constraint qualifications for nonlinear semidefinite programming with applications

We present new constraint qualification conditions for nonlinear semidefinite programming that extend some of the constant rank-type conditions from nonlinear programming. As an application of these conditions, we provide a unified global convergence proof of a class of algorithms to stationary points without assuming neither uniqueness of the Lagrange multiplier nor boundedness of the Lagrange … Read more

Weak notions of nondegeneracy in nonlinear semidefinite programming

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, $\ell$-dimensional kernel of the constraint matrix, by the linear independence of a set of $\ell(\ell+1)/2$ derivative vectors. We show that this … Read more

Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming

The constant rank constraint qualification, introduced by Janin in 1984 for nonlinear programming, has been extensively used for sensitivity analysis, global convergence of first- and second-order algorithms, and for computing the derivative of the value function. In this paper we discuss naive extensions of constant rank-type constraint qualifications to second-order cone programming and semidefinite programming, … Read more

On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees

This paper discusses the use of a stopping criterion based on the scaling of the Karush-Kuhn-Tucker (KKT) conditions by the norm of the approximate Lagrange multiplier in the ALGENCAN implementation of a safeguarded augmented Lagrangian method. Such stopping criterion is already used in several nonlinear programming solvers, but it has not yet been considered in … Read more

On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming

Second-order necessary optimality conditions for nonlinear conic programming problems that depend on a single Lagrange multiplier are usually built under nondegeneracy and strict complementarity. In this paper we establish a condition of such type for two classes of nonlinear conic problems, namely semidefinite and second-order cone programming, assuming Robinson’s constraint qualification and a generalized form … Read more

On the best achievable quality of limit points of augmented Lagrangian schemes

The optimization literature is vast in papers dealing with improvements on the global convergence of augmented Lagrangian schemes. Usually, the results are based on weak constraint qualifications, or, more recently, on sequential optimality conditions obtained via penalization techniques. In this paper we propose a somewhat different approach, in the sense that the algorithm itself is … Read more

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate … Read more