A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem

In this paper, we extend and investigate the properties of the semi-smooth Newton method when applied to a general projection equation in finite dimensional spaces. We first present results concerning Clarke’s generalized Jacobian of the projection onto a closed and convex cone. We then describe the iterative process for the general cone case and establish … Read more

Strong global convergence properties of algorithms for nonlinear symmetric cone programming

Sequential optimality conditions have played a major role in proving strong global convergence properties of numerical algorithms for many classes of optimization problems. In particular, the way complementarity is dealt is fundamental to achieve a strong condition. Typically, one uses the inner product structure to measure complementarity, which gives a very general approach to a … Read more

A relaxed quasinormality condition and the boundedness of dual augmented Lagrangian sequences

Global convergence of augmented Lagrangian methods to a first-order stationary point is well-known to hold under considerably weak constraint qualifications. In particular, several constant rank-type conditions have been introduced for this purpose which turned out to be relevant also beyond this scope. In this paper we show that in fact under these conditions the sequence … Read more

Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems

At each iteration of the Safeguarded Augmented Lagrangian algorithm Algencan, a bound-constrained subproblem consisting of the minimization of the Powell-Hestenes-Rockafellar augmented Lagrangian function is considered, for which a minimizer with tolerance tending to zero is sought. More precisely, a point that satisfies a subproblem first-order necessary optimality condition with tolerance tending to zero is required. … Read more

On achieving strong necessary second-order properties in nonlinear programming

Second-order necessary or sufficient optimality conditions for nonlinear programming are usually defined by means of the positive (semi-)definiteness of a quadratic form, or a maximum of quadratic forms, over the critical cone. However, algorithms for finding such second-order stationary points are currently unknown. Typically, an algorithm with a second-order property approximates a primal-dual point such … Read more

Constraint qualifications and strong global convergence properties of an augmented Lagrangian method on Riemannian manifolds

In the past years, augmented Lagrangian methods have been successfully applied to several classes of non-convex optimization problems, inspiring new developments in both theory and practice. In this paper we bring most of these recent developments from nonlinear programming to the context of optimization on Riemannian manifolds, including equality and inequality constraints. Many research have … Read more

A minimal face constant rank constraint qualification for reducible conic programming

\(\) In a previous paper [R. Andreani, G. Haeser, L. M. Mito, H. Ramírez, T. P. Silveira. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, 2023. DOI: 10.1007/s10107-023-01942-8] we introduced a constant rank constraint qualification for nonlinear semidefinite and second-order cone programming by considering all … Read more

On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”

In the paper [Torrealba, E.M.R. et al. Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem. EJOR, 299(1) 46–59, 2021] an augmented Lagrangian algorithm was proposed for resource allocation problems with the intriguing characteristic that instead of solving the box-constrained augmented Lagrangian subproblem, they propose projecting the solution of the unconstrained subproblem onto … Read more

Optimization of the first Dirichlet Laplacian eigenvalue with respect to a union of balls

The problem of minimizing the first eigenvalue of the Dirichlet Laplacian with respect to a union of m balls with fixed identical radii and variable centers in the plane is investigated in the present work. The existence of a minimizer is shown and the shape sensitivity analysis of the eigenvalue with respect to the centers’ … Read more

A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees

A common strategy for solving an unconstrained two-player Nash equilibrium problem with continuous variables is applying Newton’s method to the system of nonlinear equations obtained by the corresponding first-order necessary optimality conditions. However, when taking into account the game dynamics, it is not clear what is the goal of each player when considering that they … Read more