Convex sets with semidefinite representation

We provide a sufficient condition on a class of compact basic semialgebraic sets K for their convex hull to have a lifted semidefinite representation (SDr). This lifted SDr is explicitly expressed in terms of the polynomials that define K. Examples are provided. For convex and compact basic semi-algebraic sets K defined by concave polynomials, we … Read more

Exploiting symmetries in SDP-relaxations for polynomial optimization

In this paper we study various approaches for exploiting symmetries in polynomial optimization problems within the framework of semi definite programming relaxations. Our special focus is on constrained problems especially when the symmetric group is acting on the variables. In particular, we investigate the concept of block decomposition within the framework of constrained polynomial optimization … Read more

Convergent SDP-relaxations in polynomial optimization with sparsity

We consider a polynomial programming problem P on a compact basic semi-algebraic set K described by m polynomial inequalities $g_j(X)\geq0$, and with polynomial criterion $f$. We propose a hierarchy of semidefinite relaxations in the spirit those of Waki et al. [9]. In particular, the SDP-relaxation of order $r$ has the following two features: (a) The … Read more

Nonlinear optimal control: Numerical approximations via moments and LMI-relaxations

We consider the class of nonlinear optimal control problems with all data (differential equation, state and control constraints, cost) being polynomials. We provide a simple hierarchy of LMI-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Preliminary results show that good approximations are obtained with few moments. Citation LAAS … Read more

Pricing a class of exotic options via moments and SDP relaxations

We present a new methodology for the numerical pricing of a class of exotic derivatives such as Asian or barrier options when the underlying asset price dynamics are modelled by a geometric Brownian motion or a number of mean-reverting processes of interest. This methodology identifies derivative prices with infinite-dimensional linear programming problems involving the moments … Read more

A sum of squares approximation of nonnegative polynomials

We show that every real nonnegative polynomial $f$ can be approximated as closely as desired (in the $l_1$-norm of its coefficient vector) by a sequence of polynomials $\{f_\epsilon\}$ that are sums of squares. The novelty is that each $f_\epsilon$ has a simple and explicit form in terms of $f$ and $\epsilon$. Citation SIAM J. Optimization … Read more

SOS approximation of polynomials nonnegative on a real algebraic set

Let $V\subset R^n$ be a real algebraic set described by finitely many polynomials equations $g_j(x)=0,j\in J$, and let $f$ be a real polynomial, nonnegative on $V$. We show that for every $\epsilon>0$, there exist nonnegative scalars $\{\lambda_j\}_{j\in J}$ such that, for all $r$ sufficiently large, $f+\epsilon\theta_r+\sum_{j\in J} \lambda_j g_j^2$ is a sum of squares. Here, … Read more

Convergent relaxations of polynomial matrix inequalities and static output feedback

Using a moment interpretation of recent results on sum-of-squares decompositions of non-negative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve non-convex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to … Read more

SDP vs. LP relaxations for the moment approach in some performance evaluation problems

Given a Markov process we are interested in the numerical computation of the moments of the exit time from a bounded domain. We use a moment approach which, together with appropriate semidefinite positivity moment conditions, yields a sequence of semidefinite programs (or SDP relaxations), depending on the number of moments considered, that provide a sequence … Read more

Integer programming, duality and superadditive functions

Given $A \in Z^{m\times n}$, $b \in Z^m, c \in R^n$, we consider the integer program $P_d: \max \{c’x\vert Ax=b;x\in Z^n_+\}$ which has a well-known abstract dual optimization problem stated in terms of superadditive functions. Using a linear program $Q$ equivalent to $P_d$ that we have introduced recently, we show that its dual $Q^*$ can … Read more