TACO – A Toolkit for AMPL Control Optimization

We describe a set of extensions to the AMPL modeling language to conveniently model mixed-integer optimal control problems for ODE or DAE dynamic processes. These extensions are realized as AMPL user functions and suffixes and do not require intrusive changes to the AMPL language standard or implementation itself. We describe and provide TACO, a Toolkit … Read more

More Branch-and-Bound Experiments in Convex Nonlinear Integer Programming

Branch-and-Bound (B&B) is perhaps the most fundamental algorithm for the global solution of convex Mixed-Integer Nonlinear Programming (MINLP) problems. It is well-known that carrying out branching in a non-simplistic manner can greatly enhance the practicality of B&B in the context of Mixed-Integer Linear Programming (MILP). No detailed study of branching has heretofore been carried out … Read more

PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS

We present a proactive energy management framework that integrates predictive dynamic building models and day-ahead forecasts of disturbances affecting efficiency and costs. This enables an efficient management of resources and an accurate prediction of the daily electricity demand profile. The strategy is based on the on-line solution of mixed-integer nonlinear programming problems. The framework is … Read more

Concrete Structure Design Using Mixed-Integer Nonlinear Programming with Complementarity Constraints

We present a mixed-integer nonlinear programming (MINLP) formulation to achieve minimum-cost designs for reinforced concrete (RC) structures that satisfy building code requirements. The objective function includes material and labor costs for concrete, steel reinforcing bars, and formwork according to typical contractor methods. Restrictions enforce correct geometry of the cross-section dimensions for each element and relative … Read more

Nonmonotone Filter Method for Nonlinear Optimization

We propose a new nonmonotone filter method to promote global and fast local convergence for sequential quadratic programming algorithms. Our method uses two filters: a global g-filter for global convergence, and a local nonmonotone l-filter that allows us to establish fast local convergence. We show how to switch between the two filters efficiently, and we … Read more

A Pivoting Algorithm for Linear Programming with Linear Complementarity Constraints

We present a pivoting algorithm for solving linear programs with linear complementarity constraints. Our method generalizes the simplex method for linear programming to deal with complementarity conditions. We develop an anticycling scheme that can verify Bouligand stationarity. We also give an optimization-based technique to find an initial feasible vertex. Starting with a feasible vertex, our … Read more

Optimal Security Response to Attacks on Open Science Grids

Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased … Read more

A Filter Active-Set Trust-Region Method

We develop a new active-set method for nonlinear programming problems that solves a regularized linear program to predict the active set and then fixes the active constraints to solve an equality-constrained quadratic program for fast convergence. Global convergence is promoted through the use of a filter. We show that the regularization parameter fulfills the same … Read more

A Brief History of Filter Methods

We consider the question of global convergence of iterative methods for nonlinear programming problems. Traditionally, penalty functions have been used to enforce global convergence. In this paper we review a recent alternative, so-called filter methods. Instead of combing the objective and constraint violation into a single function, filter methods view nonlinear optimization as a biobjective … Read more

Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs

We present a two-phase algorithm for solving large-scale quadratic programs (QPs). In the first phase, gradient-projection iterations approximately minimize an augmented Lagrangian function and provide an estimate of the optimal active set. In the second phase, an equality-constrained QP defined by the current inactive variables is approximately minimized in order to generate a second-order search … Read more