Jordan-algebraic aspects of optimization:randomization

We describe a version of randomization technique within a general framework of Euclidean Jordan algebras. It is shown how to use this technique to evaluate the quality of symmetric relaxations for several nonconvex optimization problems Citation Preprint, June 2007 Article Download View Jordan-algebraic aspects of optimization:randomization

Numerical Experiments with universal barrier functions for cones of Chebyshev systems

Based on previous explicit computations of universal barrier functions, we describe numerical experiments for solving certain classes of convex optimization problems. The comparison is given of the performance of the classical affine-scaling algorithm with similar algorithm based upon the universal barrier function Citation To appear in “Computational Optimization and Applications” Article Download View Numerical Experiments … Read more

Jordan-algebraic approach to convexity theorem for quadratic mappings

We describe a Jordan-algebraic version of results related to convexity of images of quadratic mappings as well as related results on exactness of symmetric relaxations of certain classes of nonconvex optimization problems. The exactness of relaxations is proved based on rank estimates. Our approach provides a unifying viewpoint on a large number of classical results … Read more

Jordan-algebraic aspects of nonconvex optimization over symmetric cones

We illustrate the usefulness of Jordan-algebraic technique for nonconvex optimization by considering a potential-reduction algorithm for a nonconvex quadratic function over the domain obtained as the intersection of a symmetric cone with an affine subspace Citation Preprint, September,2004 Article Download View Jordan-algebraic aspects of nonconvex optimization over symmetric cones

Implementation of Infinite Dimensional Interior Point Method for Solving Multi-criteria Linear-Quadratic Control Problem

We describe an implementation of an infinite-dimensional primal-dual algorithm based on the Nesterov-Todd direction. Several applications to both continuous and discrete-time multi-criteria linear-quadratic control problems and linear-quadratic control problem with quadratic constraints are described. Numerical results show a very fast convergence (typically, within 3-4 iterations) to optimal solutions Citation Preprint, May, 2004, University of Notre … Read more

Semidefinite descriptions of cones defining spectral mask constraints

We discuss in detail an additive structure of cones of trigonometric polynomials nonnegative on the union of finite number of pairwise disjoint segments of the unit circle. We derive new descriptions of these cones in terms of semidefinite constraints. We explain the results of M. Krein and A. Nudelman providing a description of dual cones … Read more

Linear-quadratic control problem with a linear term on semiinfinite interval:theory and applications

We describe a complete solution of the linear-quaratic control problem with the linear term in the objective function on a semiinfinite interval. This problem has important applications to calculation of Nesterov-Todd and other primal-dual directions in infinite-dimensional setting. Citation Technical report, University of Notre Dame, December, 2003 Article Download View Linear-quadratic control problem with a … Read more

Calculation of universal barrier functions for cones generated by Chebyshev systems over finite sets

We explicitly calculate universal barrier functions for cones generated by (weakly) Chebyshev systems over finite sets. We show that universal barrier functions corresponding to Chebyshev systems on intervals are obtained as limits of universal barrier functions of their discretizations. The results are heavily rely upon classical work of M. Krein, A. Nudelman and I.J. Schoenberg … Read more

Global Optimization of Homogeneous Polynomials on the Simplex and on the Sphere

We obtain rigorous estimates for linear and semidefinite relaxations of global optimization problems on the simplex and on the sphere Citation Research report, February, 2003 Article Download View Global Optimization of Homogeneous Polynomials on the Simplex and on the Sphere

Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank

We consider primal-dual algorithms for certain types of infinite-dimensional optimization problems. Our approach is based on the generalization of the technique of finite-dimensional Euclidean Jordan algebras to the case of infinite-dimensional JB-algebras of finite rank. This generalization enables us to develop polynomial-time primal-dual algorithms for “infinite-dimensional second-order cone programs.” We consider as an example a … Read more