Exact Penalty Function for L21 Norm Minimization over the Stiefel Manifold

L21 norm minimization with orthogonality constraints, feasible region of which is called Stiefel manifold, has wide applications in statistics and data science. The state-of-the-art approaches adopt proximal gradient technique on either Stiefel manifold or its tangent spaces. The consequent subproblem does not have closed-form solution and hence requires an iterative procedure to solve which is … Read more

A Class of Smooth Exact Penalty Function Methods for Optimization Problems with Orthogonality Constraints

Updating the augmented Lagrangian multiplier by closed-form expression yields efficient first-order infeasible approach for optimization problems with orthogonality constraints. Hence, parallelization becomes tractable in solving this type of problems. Inspired by this closed-form updating scheme, we propose an exact penalty function model with compact convex constraints (PenC). We show that PenC can act as an … Read more

Parallelizable Algorithms for Optimization Problems with Orthogonality Constraints

To construct a parallel approach for solving optimization problems with orthogonality constraints is usually regarded as an extremely difficult mission, due to the low scalability of the orthonormalization procedure. However, such demand is particularly huge in some application areas such as materials computation. In this paper, we propose a proximal linearized augmented Lagrangian algorithm (PLAM) … Read more

An Alternating Minimization Method for Matrix Completion Problem

In this paper, we focus on solving matrix completion problem arising from applications in the fields of information theory, statistics, engineering, etc. However, the matrix completion problem involves nonconvex rank constraints which make this type of problem difficult to handle. Traditional approaches use a nuclear norm surrogate to replace the rank constraints. The relaxed model … Read more

An Alternating Minimization Method for Robust Principal Component Analysis

We focus on solving robust principal component analysis (RPCA) arising from various applications such as information theory, statistics, engineering, and etc. We adopt a model to minimize the sum of observation error and sparsity measurement subject to the rank constraint. To solve this problem, we propose a two-step alternating minimization method. In one step, a … Read more

A New First-order Algorithmic Framework for Optimization Problems with Orthogonality Constraints

In this paper, we consider a class of optimization problems with orthogonality constraints, the feasible region of which is called the Stiefel manifold. Our new framework combines a function value reduction step with a correction step. Different from the existing approaches, the function value reduction step of our algorithmic framework searches along the standard Euclidean … Read more

Globally Convergent Levenberg-Marquardt Method For Phase Retrieval

In this paper, we consider a nonlinear least squares model for the phase retrieval problem. Since the Hessian matrix may not be positive definite and the Gauss-Newton (GN) matrix is singular at any optimal solution, we propose a modified Levenberg-Marquardt (LM) method, where the Hessian is substituted by a summation of the GN matrix and … Read more

On the Convergence of Multi-Block Alternating Direction Method of Multipliers and Block Coordinate Descent Method

The paper answers several open questions of the alternating direction method of multipliers (ADMM) and the block coordinate descent (BCD) method that are now wildly used to solve large scale convex optimization problems in many fields. For ADMM, it is still lack of theoretical understanding of the algorithm when the objective function is not separable … Read more

On the non-ergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming

In this paper, we consider the linearly constrained composite convex optimization problem, whose objective is a sum of a smooth function and a possibly nonsmooth function. We propose an inexact augmented Lagrangian (IAL) framework for solving the problem. The stopping criterion used in solving the augmented Lagrangian (AL) subproblem in the proposed IAL framework is … Read more

On the Global Optimality for Linear Constrained Rank Minimization Problem

The rank minimization with linear equality constraints has two closely related models, the low rank approximation model, that is to find the best rank-k approximation of a matrix satisfying the linear constraints, and its corresponding factorization model. The latter one is an unconstrained nonlinear least squares problem and hence enjoys a few fast first-order methods … Read more