Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound on the clique number and its tightening introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies rapidly increases … Read more

Efficiently packing unequal disks in a circle: a computational approach which exploits the continuous and combinatorial structure of the problem

Placing $N$ non-overlapping circles in a smallest container is a well known, widely studied problem that can be easily formulated as a mathematical programming model. Solving this problem is notoriously extremely hard. Recently a public contest has been held for finding putative optimal solutions to a special case in circle packing. The contest saw the … Read more

Disk Packing in a Square: A New Global Optimization Approach

We present a new computational approach to the problem of placing $n$ identical non overlapping disks in the unit square in such a way that their radius is maximized. The problem has been studied in a large number of papers, both from a theoretical and from a computational point of view. In this paper we … Read more

A new class of test functions for global optimization

In this paper we propose a new class of test functions for unconstrained global optimization problems for which, however, it is a priori known that the global minimum lies in the interior of a sphere centered at the origin. The class depends on some parameters through which the difficulty of the test problems can be … Read more

Efficient and cheap bounds for (standard) quadratic optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple … Read more

Packing circles in a square: new putative optima obtained via global optimization

The problem of finding the optimal placement of $N$ identical, non overlapping, circles with maximum radius in the unit square is a well known challenge both in classical geometry and in optimization. A database of putative optima is currently maintained at \url{www.packomania.com}. Recently, through clever use of an extremely simple global optimization method, we succeeded … Read more

A Population Based Approach for Hard Global Optimization Problems Based on Dissimilarity Measures

When dealing with extremely hard global optimization problems, i.e. problems with a large number of variables and a huge number of local optima, heuristic procedures are the only possible choice. In this situation, lacking any possibility of guaranteeing global optimality for most problem instances, it is quite difficult to establish rules for discriminating among different … Read more

Local optima smoothing for global optimization

It is widely believed that in order to solve large scale global optimization problems an appropriate mixture of local approximation and global exploration is necessary. Local approximation, if first order information on the objective function is available, is efficiently performed by means of local optimization methods. Unfortunately, global exploration, in absence of some kind of … Read more

The global optimization of Morse clusters by potential energy transformations

The Morse potential is a simple model pair potential that has a single parameter $\rho$ which determines the width of the potential well and allows a wide variety of materials to be modelled. Morse clusters provide a particularly tough test system for global optimization algorithms, and one that is highly relevant to methods that are … Read more