A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization

In this paper, we describe a two-stage method for solving optimization problems with bound constraints. It combines the active-set estimate described in [Facchinei and Lucidi, 1995] with a modification of the non-monotone line search framework recently proposed in [De Santis et al., 2012]. In the first stage, the algorithm exploits a property of the active-set … Read more

A Frank-Wolfe Based Branch-and-Bound Algorithm for Mean-Risk Optimization

We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems … Read more

A Fast Branch-and-Bound Algorithm for Non-convex Quadratic Integer Optimization Subject To Linear Constraints Using Ellipsoidal Relaxations

We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between … Read more

A Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming

We propose a feasible active set method for convex quadratic programming problems with non-negativity constraints. This method is specifically designed to be embedded into a branch-and-bound algorithm for convex quadratic mixed integer programming problems. The branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer programming proposed by Buchheim, Caprara and Lodi to the presence … Read more

A Fast Active Set Block Coordinate Descent Algorithm for l1-regularized least squares

The problem of finding sparse solutions to underdetermined systems of linear equations arises in several real-world problems (e.g. signal and image processing, compressive sensing, statistical inference). A standard tool for dealing with sparse recovery is the l1-regularized least-squares approach that has been recently attracting the attention of many researchers. In this paper, we describe an … Read more

Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more

An Exact Algorithm for Quadratic Integer Minimization using Ellipsoidal Relaxations

We propose a branch-and-bound algorithm for minimizing a not necessarily convex quadratic function over integer variables. The algorithm is based on lower bounds computed as continuous minima of the objective function over appropriate ellipsoids. In the nonconvex case, we use ellipsoids enclosing the feasible region of the problem. In spite of the nonconvexity, these minima … Read more

New concave penalty functions for improving the Feasibility Pump

Mixed-Integer optimization represents a powerful tool for modeling many optimization problems arising from real-world applications. The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems. In this work, we propose a new feasibility pump approach using concave non-differentiable penalty functions for measuring solution integrality. We present computational results on binary … Read more