An oracle-based framework for robust combinatorial optimization

We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem,the algorithm is entirely oracle-based, i.e., our approach only requires … Read more

Minimization over the l1-ball using an active-set non-monotone projected gradient

The l1-ball is a nicely structured feasible set that is widely used in many fields (e.g., machine learning, statistics and signal analysis) to enforce some sparsity in the model solutions. In this paper, we devise an active-set strategy for efficiently dealing with minimization problems over the l1-ball and embed it into a tailored algorithmic scheme … Read more

On the exactness of the eps-constraint method for bi-objective integer nonlinear programming

The eps-constraint method is a well-known scalarization technique used for multiobjective optimization. We explore how to properly define the step size parameter of the method in order to guarantee its exactness when dealing with problems having two nonlinear objective functions and integrality constraints on the variables. Under specific assumptions, we prove that the number of … Read more

A Penalty Branch-and-Bound Method for Mixed-Binary Linear Complementarity Problems

Linear complementarity problems (LCPs) are an important modeling tool for many practically relevant situations but also have many important applications in mathematics itself. Although the continuous version of the problem is extremely well studied, much less is known about mixed-integer LCPs (MILCPs) in which some variables have to be integer-valued in a solution. In particular, … Read more

Dealing with inequality constraints in large scale semidefinite relaxations for graph coloring and maximum clique problems

Semidefinite programs (SDPs) can be solved in polynomial time by interior point methods. However, when the dimension of the problem gets large, interior point methods become impractical both in terms of computational time and memory requirements. First order methods, such as Alternating Direction Methods of Multipliers (ADMMs), turned out to be suitable algorithms to deal … Read more

A Decision Space Algorithm for Multiobjective Convex Quadratic Integer Optimization

We present a branch-and-bound algorithm for minimizing multiple convex quadratic objective functions over integer variables. Our method looks for efficient points by fixing subsets of variables to integer values and by using lower bounds in the form of hyperplanes in the image space derived from the continuous relaxations of the restricted objective functions. We show … Read more

Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more

Branching with Hyperplanes in the Criterion Space: the Frontier Partitioner Algorithm for Biobjective Integer Programming

We present an algorithm for finding the complete Pareto frontier of biobjective integer programming problems. The method is based on the solution of a finite number of integer programs. The feasible sets of the integer programs are built from the original feasible set, by adding cuts that separate efficient solutions. Providing the existence of an … Read more

Scanning integer points with lex-inequalities: A finite cutting plane algorithm for integer programming with linear objective

We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-inequalities) that defines the convex hull of the integer points in K that are not lexicographically smaller than x. The family of … Read more

An Active Set Algorithm for Robust Combinatorial Optimization Based on Separation Oracles

We address combinatorial optimization problems with uncertain coefficients varying over ellipsoidal uncertainty sets. The robust counterpart of such a problem can be rewritten as a second-oder cone program (SOCP) with integrality constraints. We propose a branch-and-bound algorithm where dual bounds are computed by means of an active set algorithm. The latter is applied to the … Read more