A Starting-Point Strategy for Nonlinear Interior Methods

This paper presents a strategy for choosing the initial point, slacks and multipliers in interior methods for nonlinear programming. It consists of first computing a Newton-like step to estimate the magnitude of these three variables and then shifting the slacks and multipliers so that they are sufficiently positive. The new strategy has the option of … Read more

On the Convergence of Successive Linear Programming Algorithms

We analyze the global convergence properties of a class of penalty methods for nonlinear programming. These methods include successive linear programming approaches, and more specifically the SLP-EQP approach presented in \cite{ByrdGoulNoceWalt02}. Every iteration requires the solution of two trust region subproblems involving linear and quadratic models, respectively. The interaction between the trust regions of these … Read more

An Active-Set Algorithm for Nonlinear Programming Using Linear Programming and Equality Constrained Subproblems

This paper describes an active-set algorithm for large-scale nonlinear programming based on the successive linear programming method proposed by Fletcher and Sainz de la Maza. The step computation is performed in two stages. In the first stage a linear program is solved to estimate the active set at the solution. The linear program is obtained … Read more

On the Convergence of Newton Iterations to Non-Stationary Points

We study conditions under which line search Newton methods for nonlinear systems of equations and optimization fail due to the presence of singular non-stationary points. These points are not solutions of the problem and are characterized by the fact that Jacobian or Hessian matrices are singular. It is shown that, for systems of nonlinear equations, … Read more

Assessing the Potential of Interior Methods for Nonlinear Optimization

A series of numerical experiments with interior point (LOQO, KNITRO) and active-set SQP codes (SNOPT, filterSQP) are reported and analyzed. The tests were performed with small, medium-size and moderately large problems, and are examined by problem classes. Detailed observations on the performance of the codes, and several suggestions on how to improve them are presented. … Read more

Feasible Interior Methods Using Slacks for Nonlinear Optimization

A slack-based feasible interior point method is described which can be derived as a modification of infeasible methods. The modification is minor for most line search methods, but trust region methods require special attention. It is shown how the Cauchy point, which is often computed in trust region methods, must be modified so that the … Read more

iNEOS : An Interactive Environment for Nonlinear Optimization

In this paper we describe iNEOS, an Internet-based environment which facilitates the solution of complex nonlinear optimization problems. It enables a user to easily invoke a remote optimization code without having to supply the model to be optimized. An interactive communication between client and server is established and maintainted using CORBA. We test the system … Read more

Feasibility Control in Nonlinear Optimization

We analyze the properties that optimization algorithms must possess in order to prevent convergence to non-stationary points for the merit function. We show that demanding the exact satisfaction of constraint linearizations results in difficulties in a wide range of optimization algorithms. Feasibility control is a mechanism that prevents convergence to spurious solutions by ensuring that … Read more