## The Subset Sum Game

In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in … Read more

## Exact Solution of the Robust Knapsack Problem

We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight di ffers from the expected one. For this problem, we provide a dynamic programming algorithm … Read more

## On the Robust Knapsack Problem

We consider an uncertain variant of the knapsack problem that arises when the exact weight of each item is not exactly known in advance but belongs to a given interval, and the number of items whose weight differs from the nominal value is bounded by a constant. We analyze the worsening of the optimal solution … Read more

## Minimum cost subset selection with two competing agents

We address an optimization problem in which two agents, each with a set of weighted items, compete in order to minimize the total weight of their solution sets. The latter are built according to a sequential game consisting in a fixed number of rounds. In every round each agent submits one item that may be … Read more

## The Maximum Flow Problem with Disjunctive Constraints

We study the maximum flow problem subject to binary disjunctive constraints in a directed graph: A negative disjunctive constraint states that a certain pair of arcs in a digraph cannot be simultaneously used for sending flow in a feasible solution. In contrast to this, positive disjunctive constraints force that for certain pairs of arcs at … Read more

## Competitive subset selection with two agents

We address an optimization problem in which two agents, each with a set of weighted items, compete in order to maximize the total weight of their winning sets. The latter are built according to a sequential game consisting in a fixed number of rounds. In every round each agent submits one item for possible inclusion … Read more

## Paths, Trees and Matchings under Disjunctive Constraints

We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict … Read more

## Resource Allocation with Time Intervals

We study a resource allocation problem where jobs have the following characteristics: Each job consumes some quantity of a bounded resource during a certain time interval and induces a given profit. We aim to select a subset of jobs with maximal total profit such that the total resource consumed at any point in time remains … Read more

## The Multidimensional Knapsack Problem: Structure and Algorithms

We study the multidimensional knapsack problem, present some theoretical and empirical results about its structure, and evaluate different Integer Linear Programming (ILP) based, metaheuristic, and collaborative approaches for it. We start by considering the distances between optimal solutions to the LP-relaxation and the original problem and then introduce a new core concept for the MKP, … Read more

## Minimal Spanning Trees with Conflict Graphs

For the classical minimum spanning tree problem we introduce disjunctive constraints for pairs of edges which can not be both included in the spanning tree at the same time. These constraints are represented by a conflict graph whose vertices correspond to the edges of the original graph. Edges in the conflict graph connect conflicting edges … Read more