Estimating the Size of Branch-and-Bound Trees

This paper investigates the estimation of the size of Branch-and-Bound (B&B) trees for solving mixed-integer programs. We first prove that the size of the B&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B&B search, such as the … Read more

The SCIP Optimization Suite 7.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies … Read more

Branch-and-Cut-and-Price for Multi-Agent Pathfinding

There are currently two broad strategies for optimal Multi-agent Pathfinding (MAPF): (1) search-based methods, which model and solve MAPF directly, and (2) compilation-based solvers, which reduce MAPF to instances of well-known combinatorial problems, and thus, can benefit from advances in solver techniques. In this work, we present an optimal algorithm, BCP, that hybridizes both approaches … Read more

Clairvoyant Restarts in Branch-and-Bound Search Using Online Tree-Size Estimation

We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart … Read more

An Abstract Model for Branching and its Application to Mixed Integer Programming

The selection of branching variables is a key component of branch-and-bound algorithms for solving Mixed-Integer Programming (MIP) problems since the quality of the selection procedure is likely to have a significant effect on the size of the enumeration tree. State-of-the-art procedures base the selection of variables on their “LP gains”, which is the dual bound … Read more

Solving MIPs via Scaling-based Augmentation

Augmentation methods for mixed-integer (linear) programs are a class of primal solution approaches in which a current iterate is augmented to a better solution or proved optimal. It is well known that the performance of these methods, i.e., number of iterations needed, can theoretically be improved by scaling methods. We extend these results by an … Read more

Approximation algorithms for the Transportation Problem with Market Choice and related models

Given facilities with capacities and clients with penalties and demands, the transportation problem with market choice consists in finding the minimum-cost way to partition the clients into unserved clients, paying the penalties, and into served clients, paying the transportation cost to serve them. We give polynomial-time reductions from this problem and variants to the (un)capacitated … Read more

How important are branching decisions: fooling MIP solvers

We show the importance of selecting good branching variables by exhibiting a family of instances for which an optimal solution is both trivial to find and provably optimal by a fixed-size branch-and-bound tree, but for which state-of-the-art Mixed Integer Programming solvers need an increasing amount of resources. The instances encode the edge-coloring problem on a … Read more