New concave penalty functions for improving the Feasibility Pump

Mixed-Integer optimization represents a powerful tool for modeling many optimization problems arising from real-world applications. The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems. In this work, we propose a new feasibility pump approach using concave non-differentiable penalty functions for measuring solution integrality. We present computational results on binary … Read more

A concave optimization-based approach for sparse portfolio selection

This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose … Read more

Exact Penalty Functions for Nonlinear Integer Programming Problems

In this work, we study exact continuous reformulations of nonlinear integer programming problems. To this aim, we preliminarily state conditions to guarantee the equivalence between pairs of general nonlinear problems. Then, we prove that optimal solutions of a nonlinear integer programming problem can be obtained by using various exact penalty formulations of the original problem … Read more

Concave programming for minimizing the zero-norm over polyhedral sets

Given a non empty polyhedral set, we consider the problem of finding a vector belonging to it and having the minimum number of nonzero components, i.e., a feasible vector with minimum zero-norm. This nonsmooth combinatorial optimization problem is NP-Hard and arises in various fields such as machine learning, pattern recognition, signal processing. We propose two … Read more