A weak tail-bound probabilistic condition for function estimation in stochastic derivative-free optimization

In this paper, we use tail bounds to define a tailored probabilistic condition for function estimation that eases the theoretical analysis of stochastic derivative-free optimization methods. In particular, we focus on the unconstrained minimization of a potentially non-smooth function, whose values can only be estimated via stochastic observations, and give a simplified convergence proof for … Read more

Retraction based Direct Search Methods for Derivative Free Riemannian Optimization

Direct search methods represent a robust and reliable class of algorithms for solving black-box optimization problems. In this paper, we explore the application of those strategies to Riemannian optimization, wherein minimization is to be performed with respect to variables restricted to lie on a manifold. More specifically, we consider classic and line search extrapolated variants … Read more

An oracle-based framework for robust combinatorial optimization

We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem,the algorithm is entirely oracle-based, i.e., our approach only requires … Read more

An Improved Penalty Algorithm using Model Order Reduction for MIPDECO problems with partial observations

This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra … Read more

Minimization over the l1-ball using an active-set non-monotone projected gradient

The l1-ball is a nicely structured feasible set that is widely used in many fields (e.g., machine learning, statistics and signal analysis) to enforce some sparsity in the model solutions. In this paper, we devise an active-set strategy for efficiently dealing with minimization problems over the l1-ball and embed it into a tailored algorithmic scheme … Read more

Frank-Wolfe and friends: a journey into projection-free first-order optimization methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility … Read more

A Unifying Framework for Sparsity Constrained Optimization

In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then … Read more

Fast cluster detection in networks by first-order optimization

Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we … Read more

A unifying framework for the analysis of projection-free first-order methods under a sufficient slope condition

The analysis of projection-free first order methods is often complicated by the presence of different kinds of “good” and “bad” steps. In this article, we propose a unifying framework for projection-free methods, aiming to simplify the converge analysis by getting rid of such a distinction between steps. The main tool employed in our framework is … Read more

A derivative-free method for structured optimization problems

Structured optimization problems are ubiquitous in fields like data science and engineering. The goal in structured optimization is using a prescribed set of points, called atoms, to build up a solution that minimizes or maximizes a given function. In the present paper, we want to minimize a black-box function over the convex hull of a … Read more